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What is Data Sparsity?

• No unique definition

• Less data than theoretically necessary for an exact 
reconstruction of a signal (Nyquist criterion)

• Sometimes it means only the special case of missing 
data with regularly missing data (few views)

– Sparse data = only view-few (Sidky E.Y., Kao C.-M., Pan, X.: 
“Accurate image reconstruction from few-views and limited-angle 
data in divergent-beam CT”)

• Sometimes it includes all cases of missing data no 
matter where data are missing

– Few-view and limited angle data (LaRoque S.J., Sidky E.Y., Pan X.: 
“Accurate image reconstruction from few-view and limited-angle 
data in diffraction tomography“)

– Bunched views, missing data at the detector (Abbas et al.: “Effects 
of sparse sampling schemes on image quality in low-dose CT”)



4

Why Data Sparsity?

• Not enough time to collect all data (e.g. in MRI, 
C-arm CT with contrast agent, …)

• Collecting all data appears to require more dose (e.g. 
in CT)

– Not always true, compare many low dose projections to a few high 
dose projections

• Cost considerations prohibit to collect all data
– E.g. in luggage screening with static CT systems

• Hardware limitations in case of limited angle

• Defect detector pixels, over or underexposure of 
certain detector areas

• Missing data due to opaque objects, e.g. metal 
implants

• …
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How to Handle Data Sparsity?

• Fill missing data with zeroes
– Bad idea

– Typically implicitly done by analytical algorithms

• Interpolate or extrapolate to fill unknown data points 
and proceed as if data were not sparse

– No good idea

– Useful as a first test

• Use additional knowledge about the signal (here: 
patient) and incorporate that a priori knowledge into 
signal processing

– Optimal way to proceed

– Typically no closed analytical solution

– Often requires iterative data processing (data domain and a priori 
knowledge domain are often different)
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Types of a Priori Knowledge
• Image gray values are restricted (e.g. to be positive)

• Patient support is finite (e.g. < 50 cm diameter)

• Image mainly consists of homogeneous areas with edges
in between: gradient or edge image is sparse (i.e. consists
of many pixels with value zero)

• Image is known to consist of only a few non-zero Fourier 
or wavelet coefficients

• Object moves from frame to frame according to a smooth 
motion vector field

• Object motion is quasi periodic

• Patient anatomy is known (e.g. prior to intervention) and only a 
few regions are expected to change (those that receive contrast 
agent or those that contain interventional material)

• Patient anatomy is approximately known (e.g. from an atlas)

• Artifacts are approximately known and can be predicted

• …
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Sparseness Transform

• Reconstruction means solving p = A⋅⋅⋅⋅f.

• If measured data are sparse the linear 
system is underdetermined.

• To find a proper solution with less artifacts 
include a priori knowledge.

• Include a priori knowledge by transforming 
the image f such that the result g of the 
transformation is known to be  sparse (i.e. 
known to have many zero entries).

• Search for the solution f to p = A⋅⋅⋅⋅f that 
results in the most sparsest g.

f ∈∈∈∈

f =

f

g
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• By counting nonzero entries via L0-norm:

• L0-norm is not convex. Minimization is not possible 
unless global search methods are used.

• Alternatives:
– L1-norm: not strictly convex and non-differentiable, but better 

approximation to L0-norm

– L2-norm: strictly convex and differentiable => possible to use 
standard convex optimization methods:

How to Measure Sparsity? 
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Solution by L2 minimization

Sparse solution (L0 minimzation)
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Solution by L1 minimization

Sparse solution (L0 minimzation)



27

Simple Demonstration

True image f and 
projection data p
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Total Variation (TV) Minimization

• Image gradient magnitude:

• Total variation (=L1-norm of the gradient image):

• If applied as sparsifying transformation: search for 
an image with only few edges or smooth edges

• Suppresses noise in the image
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Higher TV Lower TV

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Example 1: iTV

• Improved total variation minimization (iTV)
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Two Formulations of the Same 
Problem

Constrained
formulation

Unconstrained
formulation

unknown

unknown
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How to choose ε or µ?

• For every value ε there exists a value of µ which 
yields the same solution of the problem.

• There exists a value               , which represents the 
best possible rawdata fidelity of the reconstructed 
image. 
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Important

• Only solutions close to really represent the
physically measured image content. 

• Otherwise the influence of the regularization function
will become too strong.
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iTV Algorithm

• Solves the constrained problem

• Reaches a solution close to                automatically.

• Leads to an approximative solution of the 
constrained optimization problem

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.



53

iTV Algorithm

• Constrained optimization 
problem

• Solve  1 with gradient descent 
and 2 with SART separately.

• iTV adapts both steps 
automatically to ensure result 
at lowest value of ε.

• Reconstructed image is 
consistent with projections, 
no oversmoothing.  No a 
priori knowledge of ε.

1 2

Sidky E Y, Pan X et al, 2009. Enhanced imaging of microcalcifications in digital breast tomosynthesis 
through improved image reconstruction algorithms Med.Phys. 36 4920–32

iTV

ASD-POCS

FBP
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Sparse Projections
FBP 128 Projections

C = 0 HU   W = 400 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Sparse Projections
iTV 128 Projections

C = 0 HU   W = 400 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Sparse Projections
Reference

C = 0 HU   W = 400 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Metal Implants

FBP

C = 0 HU   W = 400 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Metal Implants

iTV

C = 0 HU   W = 400 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Limited Angle Tomography
FBP 135°

C = 0 HU   W = 500 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Limited Angle Tomography
iTV 135°

C = 0 HU   W = 500 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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Limited Angle Tomography
Ground Truth

C = 0 HU   W = 500 HU

Ritschl, L. ; Bergner, F. ; Fleischmann, C. ; Kachelrieß, M. : Improved total variation based CT 
image reconstruction applied to clinical data. PMB 56, 2011.
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The iTV Approach is Extendable to
More Complex Problems

Axial Sagittal Coronal

Cardiac Gating : ∆C=10% Image window:   C=0 HU / W=1200 HU

Ritschl, L. ; Sawall, S. ; Knaup, M. ; Hess, A. ; Kachelrieß, M. : Iterative 4D cardiac micro-CT image recon-
struction using an adaptive spatio-temporal sparsity prior. PMB 57, 2012.

FBP FBP FBP

3D TV 3D TV 3D TV

4D TV 4D TV 4D TV
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Example 2: acMoCo

• Motion-compensated (MoCo) image reconstruction 
for image-guided radiation therapy (IGRT)
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Slowly Rotating CBCT Devices

• Image-guided radiation 
therapy (IGRT)

– CBCT imaging unit mounted 
on gantry of a LINAC 
treatment system

– E.g. used for patient positioning

• Maximum gantry rotation 
speed of 6°per second

– Much slower than clinical CT 
devices (60 s and more 
vs. about 0.28 s per rotation)

• Breathing cycle about 
2 to 5 seconds 

– i.e. 12 to 30 respirations per 
minute (rpm) and thus per scan

Detector
kV Source

Linear Accelerator

Gantry
Rotation
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Retrospective Gating

Measured projections
assigned to one phase bin

Angular spacing of 
projection bins

Acquisition angle

100 %

0 %

50 %

Amplitude

Time
Projection angle

0 %50 % 0 %50 % 0 %50 % 0 %50 % 0 %50 %

End-Inhale

End-Exhale

Without gating (3D): 
Motion artifacts

With gating (4D):
Sparse-view artifacts
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Motion Compensation (MoCo)

• Use all projection data for each 
phase to be reconstructed

– Even those of other phase bins

– Compensate for motion using motion 
vector fields (MVFs) 

– In our case MVFs are estimated from 
phase-correlated (gated) reconstructions

• Backproject-then-warp
– Backproject sparse data along straight 

lines, warp with respect to the MVFs, and 
superimpose warped backprojections
of all sparse data

– Projection data    , phase-correlated 
reconstruction operator          , MVF
from phase bin    to phase bin 

Ground truth in end-exhale 

Backprojection on (straight) 
acquisition lines of a projection 

acquired in end-inhale

Warped backprojection
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• Motion estimation via 
standard 3D-3D registration

• Has to be repeated for each
reconstructed phase

• Streak artifacts from gated reconstructions propagate 
into sMoCo results

Gated 4D CBCT

A Standard Motion Estimation and 
Compensation Approach (sMoCo)

sMoCo

Li et al., “Enhanced 4D cone–beam CT with inter–phase motion model,” Med. Phys. 51(9), 3688–3695 (2007).
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• Motion estimation only between adjacent phases 
– All other MVFs given by concatenation

• Incorporate additional knowledge
– A priori knowledge of quasi periodic breathing pattern

– Non-cyclic motion is penalized

– Error propagation due to concatenation is reduced

A Cyclic Motion Estimation and 
Compensation Approach

Displacement curve
of a fictitious pixel
over complete 
respiratory cycle

w/o temporal constraints

with temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for
motion-compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12), 7603-7618 (2012). 

Reported at CT-Meeting 2012, MIC 2012, RSNA 2012. 
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Angular Sampling Artifact Model

• Create second series of images with sparse-view 
artifacts but without breathing motion

• Eliminate breathing motion information
– Threshold-based segmentation of 3D CBCT

• Simulate measurement and reconstruction process
– Forward projection of segmented image

– Backprojection at same angles as for gated 4D CBCT

Segmented Image3D CBCT

C = -200 HU, W = 1400 HU
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Gated 4D CBCT

Angular Sampling Artifact Model

• Create second series of images with sparse-view 
artifacts but without breathing motion

• Eliminate breathing motion information
– Threshold-based segmentation of 3D CBCT

• Simulate measurement and reconstruction process
– Forward projection of segmented image

– Backprojection at same angles as for gated 4D CBCT

4D Artifact Images

C = -200 HU, W = 1400 HU
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Angular Sampling Artifact Model

Segmented Image3D CBCT

C = -200 HU, W = 1400 HU

Gated 4D CBCT 4D Artifact Images

Virtual rawdata:Measured data:
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Motion Estimation using an 
Patient-Specific Artifact Model

Cyclic RegistrationGating and Independent 
Reconstruction

Measured Data Gated 4D CBCT

4D Artifact Images

3D CBCT

Segmented Image

Forward Projections

acMoCo:
Artifact Model-Based 
Motion Compensation

Motion Vector Fields
(induced by artifacts only)

Simulate Motionless 
Projection Data

Motion Vector Fields
(Corrected)

Motion Vector Fields
(induced by breathing

and artifacts)
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Patient Data – Results

sMoCo
Standard Motion 
Compensation

3D CBCT
Standard

Gated 4D CBCT 
Conventional 

Phase-Correlated

aMoCo
Artifact Model-Based 
Motion Compensation

C = -200 HU, W = 1400 HU
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Example 3: Pridict

• Tomographic fluoroscopy at conventional dose for 
interventional imaging: prior image dynamic 
interventional CT
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Interventional Radiology

• Interventional radiology:
– Minimally invasive interventions guided by

x-ray imaging techniques

– C-arm systems

• Projective fluoroscopy:
– 2D projections

– Position of interventional material is often
ambiguous.

– To resolve ambiguities trial-and-error 
approaches are applied or a 3D volume has 
to be acquired.

• Low dose tomographic fluoroscopy:
– 3D volumes, temporally resolved

– For clinical acceptance the dose should be
limited to the same level as that of
projective fluoroscopy.

2D+T

3D+T

3D
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Realization of Tomographic
Fluoroscopy

Prior scan
many projections

Intervention scan
few projections

• Low dose by:
– Low tube current

– Very few projections (pulsed mode)

• Advantages of intervention guidance:
– Repetitive scanning of the same body region.

– Interventional materials are fine structures (few voxels) of high contrast (metal).
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PrIDICT-Algorithm[1]

Time frameFDK-reconstruction of 
rawdata difference

Significant voxels
(voxels with high 

intensity)

Static prior
Difference between 

rawdata and forward 
projected prior

NU projections (measured)

NU projections
(forward projected prior)

[1] J. Kuntz, R. Gupta, S.O. Schönberg, W. Semmler, M. Kachelrieß, and S. Bartling, “Real-time x-ray-based 4D 
image guidance of minimally invasive interventions”, Eur. Radiol., 23(6): 1669-1677, Jun. 2013.
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3D+T Fluoroscopy at 2D+T Dose
Stent expansion in pig carotis with angiographic roadmap overly
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3D+T Fluoroscopy at 2D+T Dose
Guide wire in pig carotis with angiographic roadmap overly
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Summary

• Modern iterative reconstruction concepts (among 
those is compressed sensing) allow effectively to 
incorporate a priori knowledge.

• Data sparsity can be well handled, if priors are well 
chosen.

• The concepts of how to handle data sparsity are 
quite manifold.
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FBP Learned dictionary

C/W = 0/1000 C/W = 0/1000
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Xerox Compression Problem

May related problems also occur in medical image reconstruction or restoration?
E.g. when using priors based on non local means (NLM)?

WorkCentre 7535

Reported by David Kriesel, August 2013

True TIFF scan

Xerox WorkCentre
7535 PDF scan

Xerox WorkCentre
7536 PDF scan 1

Xerox WorkCentre
7536 PDF scan 2

Xerox WorkCentre
7536 PDF scan 3

Detail 1 Detail 2 Detail 3

True TIFF scan

Xerox WorkCentre
7535 PDF scan
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


