
• Spiral
• ASSR Std
• p = 1.0

• 256 slices
• (0/300)

• Spiral 
• EPBP Std
• p = 1.0

Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004



Advantages of Cone-Beam Spiral CT

• Image quality nearly independent of pitch

• Increase 
– of scan speed

– of z-resolution

• New applications
– CT angiography

– dynamic studies

– virtual endoscopy

– cardiac CT

– DECT

– …

Today, complete anatomical regions are 
routinely scanned with cone-beam spiral CT 

within a few seconds with isotropic sub-
millimeter spatial resolution.



Iterative Image Reconstruction



Update 
equation

Model

Modified from Johan Nuyts, „New image reconstruction techniques“, ECR 2012



Influence of Update Equation and Model



1. Problem

2. Solution

3. Discretisation

1. Problem

2. Discretisation

3. Solution

Classical Iterative Reconstruction

Analytical Reconstruction



Linear System and CT System Matrix

Radon or x-ray 
transform

image to be
reconstructed

measured
rawdata



Kaczmarz‘s Method



Kaczmarz‘s Method (2)

• Successively solve

• To do so, project onto the hyperplanes

• Repeat until some convergence criterion is reached



Kaczmarz‘s Method (3)



Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique 

(ART)



Flavours of Iterative Reconstruction

• ART

• SART  

• MLEM

• OSC

• and dozens more …



Iterative Region of Interest (IROI)

– =

ROI

FBP with clipped ROI

forward project

Sinogram ROI sinogram

FBP
∆xyFull = 0.25 mm

A. Ziegler, T. Nielsen, and M. Grass, “Iterative Reconstruction of Region of Interest for Transmission Tomography”, Med. Phys. 
35 (4), Mar. 2008

reconstruct
analytically

IROI reconstruction
∆xyROI = 0.04 mm

reconstruct
iteratively



Iterative Reconstruction: Parameters
• Image/object representation

– Pixel centers

– Pixel area

– Blobs

– Sampling density (pixel size, pixel locations, …)

• Forward model (forward projection)
– Joseph-type, Bresenham-type, distance-driven-type, …

– Needle beam (infinitely thin ray), many needle beams per ray, …

– Beam shape (varying beam cross-section, angular blurring, …)

– Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, …)

• Objective function, update equation
– Statistical model (Gaussian, Poisson, shifted Poisson, …)

– Regularisation (edge-preserving, …)

– Artifact reduction

• Inverse model (backprojection)
– Transpose of forward model

– Pixel-driven backprojection

– Filtered backprojection

– …



Image Representation



Image Representation



Image Representation



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Image Representation and 
Forward Model are Linked!

Joseph’s forward projector



Objective Function: Gauß Model

• Assume that the attenuation is Gaussian-distributed

i.e.                                                       with                .

• Consequently, the likelihood for all N measured 

signals is (                   ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.



• This leads us to minimizing

which means solving

• This must be done numerically (e.g. Jacobi method) 
and the solutions are often of type



Update Equation: Gauß Model

• ART

• SART

• and many more …



Objective Function: Poisson Model

• Assume that the intensities are Poisson-distributed

which means                                with                         .

• Consequently, the likelihood for all N measured 

signals is (                          ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.



Update Equation: Poisson Model

• MLEM

• OSC

• and many more …



OSC 4 OSC 8

OSC 128 FBP

OSC 128 −−−− FBP

(C
=

0
,  W

=
1
5
0

)

(C
=

0
,  W

=
1
0
0

)

σσσσ=44 HU σσσσ=67 HU

Native OSC Converges Slowly



Proper Initialization Helps!

OSC 4, initialized with
constant value

OSC 4, initialized with
matched FBP

OSC 4, initialized with
smooth FBP

Same noise as FBP 50% less noise than FBPInsufficient image quality

(C
=

0
,  W

=
1
5
0

)
(C

=
0

,  W
=

1
0
0

)

FBP image subtracted.

σσσσ=67 HU σσσσ=33 HU



Ordered Subsets

• Divide one iteration into S sub-iterations.

• Each of these S subsets covers N/S projections.

• During one iteration all subsets and therefore all 
projections are used exactly once.

• Per iteration the volume is updated S times (once per 
sub-iteration).

• An up to S-fold speed-up can be observed.



Ordered Subsets
Illustration for N = 32 Projections

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

Conventional procedure without subets (S = 1)

Ordered subsets with S = 8 sub-iterations



Ordered Subsets

0123
4

5
6

31

8
9

12

13

10

11

14

16

19

22

20

27
26

25

7

29

18

23

21

17

28

24

30

15

NProjections = 32, Ordered Subsets: NSubsets = 8



Sequence Can be Generated Using 
Simple Bit Reversal

0  ->   0

1  ->  16

2  ->   8

3  ->  24

4  ->   4

5  ->  20

6  ->  12

7  ->  28

8  ->   2

9  ->  18

10  ->  10

11  ->  26

12  ->   6

13  ->  22

14  ->  14

15  ->  30

16  ->   1

17  ->  17

18  ->   9

19  ->  25

20  ->   5

21  ->  21

22  ->  13

23  ->  29

24  ->   3

25  ->  19

26  ->  11

27  ->  27

28  ->   7

29  ->  23

30  ->  15

31  ->  31



Iterations
S = 1 (no subsets) S = 32 (ordered subsets)

512 iterations 16 iterations

512 iterations 16 iterations

C = 0 HU, W = 1000 HU



Image Updates
S = 1 (no subsets) S = 32 (ordered subsets)

512 updates 512 updates

512 updates 512 updates

C = 0 HU, W = 1000 HU



What Makes Iterative Recon Attractive?
• No need to come find an analytical solution

• Works for all geometries with only small adaptations

• Allows to model any effect

• Allows to incorporate prior knowledge
– noise properties (quantum noise, electronic noise, noise texture, …)

– prior scans (e.g. planning CT, full scan data, …)

– image properties such as smoothness, edges (e.g. minimum TV)

– …

• Handles missing data implicitly (but not necessarily 
better)

Phase-correlated Feldkamp High dimensional TV minimization1

1L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012





Iterative != Iterative
• In many cases artifact correction is iterative

– Higher order beam hardening correction

– Cone-beam artifact correction

– Scatter correction

• Practical “iterative reconstruction” approaches
– often use empirical solutions

– combine iterative with analytical reconstruction

– combine iterative or analytical reconstruction with image 
restoration

Phase-correlated Feldkamp Low dose phase-correlated (LDPC) recon1

1S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrieß, MedPhys 38(3), 2011



• Aim: less artifacts, lower noise, lower dose

• Iterative reconstruction
– Reconstruct an image.

– Regularize the image.

– Does the image correspond to the rawdata?

– If not, reconstruct a correction image and continue.

• SPECT + PET are iterative for a long time.

• Until recently, the computational demand 
prohibited to use iterative recon in CT.

• First CT product implementations
– AIDR (adaptive iterative dose recuction, Toshiba)

– ASIR (adaptive statistical iterative reconstruction, GE)

– iDose (Philips)

– IRIS (image reconstruction in image space, Siemens)

– VEO, MBIR (model-based iterative reconstruction, GE) 

– SAFIRE (sinogram-affirmed iterative reconstruction, Siemens)

Iterative Reconstruction



Iterative reconstruction and restoration

at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany

Conventional reconstruction 

at 100% dose



Iterative reconstruction and restoration

at 40% dose

Conventional reconstruction 

at 100% dose

Images provided by Siemens Healthcare, Forchheim, Germany



Iterative reconstruction and restoration

at 40% dose

Conventional reconstruction 

at 100% dose

Images provided by Siemens Healthcare, Forchheim, Germany



100% dose 50% dose 50% dose + IRIS

Image courtesy of Prof. Dr. Michael Lell, Erlangen, Germany



Summary

• Analytical image reconstruction
– is compute efficient

– requires new solutions for new trajectories

– is what most images are reconstructed 
with

• Iterative image reconstruction
– requires much more computational effort

– allows to easily model constraints

– allows to incorporate prior knowledge

• Practical modern solutions
– often are a combination of analytical and 

iterative recon

– are offered by the major manufacturers of 
diagnostic CT

Iterative reconstruction and 
restoration at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany

Conventional recon 
at 100% dose



Thank 
You!

This presentation will soon be available at www.dkfz.de/ct.

The iteration videos were prepared by my colleague 
Christian Hofmann.


