# Spiral ASSR Std *p* = 1.0



# Spiral EPBP Std *p* = 1.0



• 256 slices • (0/300)

Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004

# **Advantages of Cone-Beam Spiral CT**

- Image quality nearly independent of pitch
- Increase
  - of scan speed
  - of z-resolution
- New applications
  - CT angiography
  - dynamic studies
  - virtual endoscopy
  - cardiac CT
  - DECT
  - ...

Today, complete anatomical regions are routinely scanned with cone-beam spiral CT within a few seconds with isotropic submillimeter spatial resolution.





#### **Iterative Image Reconstruction**



$$x^{2} = y$$
Model
$$x \rightarrow y$$

$$(x_{n} + \Delta x_{n})^{2} = y$$

$$x_{n}^{2} + 2x_{n}\Delta x_{n} + x_{n}^{2} = y$$

$$x_{n}^{2} + 2x_{n}\Delta x_{n} \approx y$$

$$\Delta x_{n} = \frac{1}{2}(y - x_{n}^{2})/x_{n}$$

$$x_{n+1} = x_{n} + \Delta x_{n}$$
Update equation

Modified from Johan Nuyts, "New image reconstruction techniques", ECR 2012



| Influence of Update Equation and Model                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $0.5 (3 - x_n^2)/x_n$                                                                                                                                           | $0.4(3-x_n^2)/x_n$                                                                                                                                                          | $0.5  (3 - x_n^{2.1}) / x_n$                                                                                                                                               |  |  |  |
| $x_0 = 1.$                                                                                                                                                      | $x_0 = 1.$                                                                                                                                                                  | $x_0 = 1.$                                                                                                                                                                 |  |  |  |
| $x_1 = 2.$                                                                                                                                                      | $x_1 = 1.8$                                                                                                                                                                 | $x_1 = 2.$                                                                                                                                                                 |  |  |  |
| $x_2 = 1.75$                                                                                                                                                    | $x_2 = 1.74667$                                                                                                                                                             | $x_2 = 1.67823$                                                                                                                                                            |  |  |  |
| $x_3 = 1.73214$                                                                                                                                                 | $x_3 = 1.73502$                                                                                                                                                             | $x_3 = 1.68833$                                                                                                                                                            |  |  |  |
| $x_4 = 1.73205$                                                                                                                                                 | $x_4 = 1.73265$                                                                                                                                                             | $x_4 = 1.68723$                                                                                                                                                            |  |  |  |
| $x_5 = 1.73205$                                                                                                                                                 | $x_5 = 1.73217$                                                                                                                                                             | $x_5 = 1.68734$                                                                                                                                                            |  |  |  |
| $x_6 = 1.73205$                                                                                                                                                 | $x_6 = 1.73207$                                                                                                                                                             | $x_6 = 1.68733$                                                                                                                                                            |  |  |  |
| $x_7 = 1.73205$                                                                                                                                                 | $x_7 = 1.73206$                                                                                                                                                             | $x_7 = 1.68733$                                                                                                                                                            |  |  |  |
| $x_8 = 1.73205$                                                                                                                                                 | $x_8 = 1.73205$                                                                                                                                                             | $x_8 = 1.68733$                                                                                                                                                            |  |  |  |
| $egin{aligned} x_0 &= 1.\ x_1 &= 2.\ x_2 &= 1.75\ x_3 &= 1.73214\ x_4 &= 1.73205\ x_5 &= 1.73205\ x_6 &= 1.73205\ x_7 &= 1.73205\ x_8 &= 1.73205 \end{aligned}$ | $egin{aligned} x_0 &= 1. \ x_1 &= 1.8 \ x_2 &= 1.74667 \ x_3 &= 1.73502 \ x_4 &= 1.73265 \ x_5 &= 1.73217 \ x_6 &= 1.73207 \ x_7 &= 1.73206 \ x_8 &= 1.73205 \end{aligned}$ | $egin{aligned} x_0 &= 1. \ x_1 &= 2. \ x_2 &= 1.67823 \ x_3 &= 1.68833 \ x_4 &= 1.68723 \ x_5 &= 1.68734 \ x_6 &= 1.68733 \ x_7 &= 1.68733 \ x_8 &= 1.68733 \end{aligned}$ |  |  |  |

 $x^2 = 3, \quad x_0 = 1, \quad x_{n+1} = x_n + \Delta x_n$ 



# Analytical Reconstruction1. Problem $p(\vartheta, \xi) = \int dx dy f(x, y) \delta(x \cos \vartheta + y \sin \vartheta - \xi)$ 2. Solution $f(x, y) = \int_{0}^{\pi} d\vartheta p(\vartheta, \xi) * k(\xi) \Big|_{\xi = x \cos \vartheta + y \sin \vartheta}$ 3. Discretisation $f = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{K} \cdot \mathbf{p} = \mathbf{R}^{\mathrm{T}} \cdot (\mathbf{k} * \mathbf{p})$

#### **Classical Iterative Reconstruction**

1. Problem  $p(\vartheta,\xi) = \int dx dy f(x,y) \delta(x\cos\vartheta + y\sin\vartheta - \xi)$ 

2. Discretisation

$$p = R \cdot f$$

3. Solution  $\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R}^{2} \cdot \boldsymbol{1}}$ 

## Linear System and CT System Matrix





dkfz.

#### **Kaczmarz's Method**





#### Kaczmarz's Method (2)

- Successively solve  $\boldsymbol{r}_n \cdot \boldsymbol{f} = p_n$
- To do so, project onto the hyperplanes

$$oldsymbol{r}_n \cdot ig(oldsymbol{f} + \lambda oldsymbol{r}_nig) = p_n$$
 $\lambda = p_n - oldsymbol{r}_n \cdot oldsymbol{f}$ 
 $oldsymbol{f}_{ ext{new}} = oldsymbol{f} + \lambda oldsymbol{r}_n$ 
 $oldsymbol{f}_{ ext{new}} = oldsymbol{f} + oldsymbol{r}_n oldsymbol{r}_n \cdot oldsymbol{f}$ 

Repeat until some convergence criterion is reached

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{r}_n (p_n - \boldsymbol{r}_n \cdot \boldsymbol{f}_{\nu})$$



Kaczmarz's Method (3)  

$$f_1$$
,  $r_1 \cdot f = p_1$   
 $f_3$ ,  $f_1$ ,  $r_1 \cdot f = p_1$   
 $f_3$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,  $f_1$ ,  $f_2$ ,



#### Kaczmarz in Image Reconstruction: Algebraic Reconstruction Technique (ART)

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{r}_n (p_n - \boldsymbol{r}_n \cdot \boldsymbol{f}_{\nu})$$

$$oldsymbol{f}_{
u+1} = oldsymbol{f}_{
u} + oldsymbol{R}^{\mathrm{T}} \cdot rac{oldsymbol{p} - oldsymbol{R} \cdot oldsymbol{f}_{
u}}{oldsymbol{R}^2 \cdot oldsymbol{1}}$$



Flavours of Iterative Reconstruction • ART  $f_{\nu+1} = f_{\nu} + R^{T} \cdot \frac{p - R \cdot f_{\nu}}{R^{2} \cdot 1}$ 

• SART 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \frac{1}{\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{1}} \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R} \cdot \boldsymbol{1}}$$

• MLEM 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{p}}\right)}$$

• OSC 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} - e^{-\boldsymbol{p}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}\right)}$$

and dozens more ...



#### **Iterative Region of Interest (IROI)**





#### **Iterative Reconstruction: Parameters**

- Image/object representation
  - Pixel centers
  - Pixel area
  - Blobs
  - Sampling density (pixel size, pixel locations, ...)
- Forward model (forward projection)
  - Joseph-type, Bresenham-type, distance-driven-type, ...
  - Needle beam (infinitely thin ray), many needle beams per ray, ...
  - Beam shape (varying beam cross-section, angular blurring, ...)
  - Physical effects (beam hardening, scatter, motion, detector sensitivity, nonlinear partial volume effect, ...)

#### Objective function, update equation

- Statistical model (Gaussian, Poisson, shifted Poisson, ...)
- Regularisation (edge-preserving, ...)
- Artifact reduction
- Inverse model (backprojection)
  - Transpose of forward model
  - Pixel-driven backprojection
  - Filtered backprojection

 $C(\boldsymbol{f}) = \left(\boldsymbol{R}\cdot\boldsymbol{f} - \boldsymbol{p}\right)^2$ 

 $f(x,y) = \sum f_m b(x-x_m, y - y_m)$ 



# **Image Representation**

| • | • | • | • | • |
|---|---|---|---|---|
| • | • | • | • | • |
| • | • | • | • | • |
| • | • | • | • | • |
| • | • | • | • | • |

$$b(x,y) = \bullet$$



# **Image Representation**



$$b(x,y) =$$



## **Image Representation**



b(x,y) =



























#### Image Representation and Forward Model are Linked!



Joseph's forward projector



#### **Objective Function: Gauß Model**

Assume that the attenuation is Gaussian-distributed

$$\mathcal{L}(A) = \mathcal{N}(\sigma, \boldsymbol{r} \cdot \boldsymbol{f})$$
  
i.e.  $P(A = a) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(a - \mu)^2/\sigma^2}$  with  $\mu = \boldsymbol{r} \cdot \boldsymbol{f}$ .  
• Consequently, the likelihood for all *N* measured signals is ( $\mu_n = r_n \cdot f$ ):

$$P(\boldsymbol{A} = \boldsymbol{a}, \boldsymbol{f}) = \prod_{n} P(A_n = a_n)$$

Before maximizing take the log, penalize roughness,

$$L(\boldsymbol{f}) = -\sum_{n} \left(\frac{a_n - \mu_n}{\sigma_n}\right)^2 - \beta R(\boldsymbol{f})$$

and then find the image *f* that maximizes *L*.



This leads us to minimizing

$$(\boldsymbol{R}\cdot\boldsymbol{f}-\boldsymbol{a})^{\mathrm{T}}\cdot\boldsymbol{D}\cdot(\boldsymbol{R}\cdot\boldsymbol{f}-\boldsymbol{a})$$

which means solving 
$$\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{D} \cdot (\boldsymbol{R} \cdot \boldsymbol{f} - \boldsymbol{a}) = \boldsymbol{0}$$

 This must be done numerically (e.g. Jacobi method) and the solutions are often of type

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \operatorname{diag}(\boldsymbol{u}) \cdot \boldsymbol{R}^{\mathrm{T}} \cdot \operatorname{diag}(\boldsymbol{v}) \cdot (\boldsymbol{a} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu})$$



# • ART $f_{\nu+1} = f_{\nu} + R^{T} \cdot rac{p - R \cdot f_{\nu}}{R^{2} \cdot 1}$

• SART 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \frac{1}{\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{1}} \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R} \cdot \boldsymbol{1}}$$

and many more ...



#### **Objective Function: Poisson Model**

- Assume that the intensities are Poisson-distributed  $\mathcal{L}(I) = \mathcal{P}(I_0 e^{-r \cdot f})$ 

which means  $P(I=i) = \frac{\mu^i}{i!}e^{-\mu}$  with  $\mu = I_0e^{-r} \cdot f$ .

• Consequently, the likelihood for all *N* measured signals is ( $\mu_n = I_0 e^{-r_n \cdot f}$ ):

$$P(\boldsymbol{I}=\boldsymbol{i},\boldsymbol{f}) = \prod_{n} P(I_n=i_n) = \frac{\mu_n^{\iota_n}}{i_n!} e^{-\mu_n}$$

Before maximizing take the log, penalize roughness,

$$L(\boldsymbol{f}) = \sum_{n} (i_n \ln \mu_n - \mu_n) - \beta R(\boldsymbol{f})$$

and then find the image *f* that maximizes *L*.



#### **Update Equation: Poisson Model**

• MLEM 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{p}}\right)}$$

• OSC 
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} - e^{-\boldsymbol{p}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}\right)}$$

• and many more ...



# Native OSC Converges Slowly









(C=0, W=150)

# **Proper Initialization Helps!**

# OSC 4, initialized with constant value

OSC 4, initialized with matched FBP

OSC 4, initialized with smooth FBP



Insufficient image quality

Same noise as FBP

50% less noise than FBP



#### **Ordered Subsets**

- Divide one iteration into S sub-iterations.
- Each of these S subsets covers N/S projections.
- During one iteration all subsets and therefore all projections are used exactly once.
- Per iteration the volume is updated *S* times (once per sub-iteration).
- An up to S-fold speed-up can be observed.



# Ordered Subsets Illustration for *N* = 32 Projections

Conventional procedure without subets (S = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with *S* = 8 sub-iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



#### **Ordered Subsets**



N<sub>Projections</sub> = 32, Ordered Subsets: N<sub>Subsets</sub> = 8



# Simple Bit Reversal





#### Iterations



C = 0 HU, W = 1000 HU



#### **Image Updates**



C = 0 HU, W = 1000 HU



# What Makes Iterative Recon Attractive?

- No need to come find an analytical solution
- Works for all geometries with only small adaptations
- Allows to model any effect
- Allows to incorporate prior knowledge
  - noise properties (quantum noise, electronic noise, noise texture, ...)
  - prior scans (e.g. planning CT, full scan data, ...)
  - image properties such as smoothness, edges (e.g. minimum TV)

- ...

Handles missing data implicitly (but not necessarily better)

**Phase-correlated Feldkamp** 



#### High dimensional TV minimization<sup>1</sup>





<sup>1</sup>L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012

IOP PUBLISHING

INVERSE PROBLEMS

Inverse Problems 25 (2009) 123009 (36pp)

doi:10.1088/0266-5611/25/12/123009

#### TOPICAL REVIEW

#### Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

#### Xiaochuan Pan<sup>1,2</sup>, Emil Y Sidky<sup>1</sup> and Michael Vannier<sup>1</sup>

 <sup>1</sup> Department of Radiology MC-2026, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
 <sup>2</sup> Department of Radiation and Cellular Oncology, 5841 S. Maryland Avenue, Chicago, IL 60637, USA

Received 23 September 2009 Published 1 December 2009 Online at stacks.iop.org/IP/25/123009

#### Abstract

Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scappers has remained virtually constant for the past



#### **Iterative** != Iterative

#### In many cases artifact correction is iterative

- Higher order beam hardening correction
- Cone-beam artifact correction
- Scatter correction
- Practical "iterative reconstruction" approaches
  - often use empirical solutions
  - combine iterative with analytical reconstruction
  - combine iterative or analytical reconstruction with image restoration

#### Phase-correlated Feldkamp





#### Low dose phase-correlated (LDPC) recon<sup>1</sup>



<sup>1</sup>S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrieß, MedPhys 38(3), 2011



# **Iterative Reconstruction**

- Aim: less artifacts, lower noise, lower dose
- Iterative reconstruction
  - Reconstruct an image.
  - Regularize the image.
  - Does the image correspond to the rawdata?
  - If not, reconstruct a correction image and continue.
- SPECT + PET are iterative for a long time.
- Until recently, the computational demand prohibited to use iterative recon in CT.
- First CT product implementations
  - AIDR (adaptive iterative dose recuction, Toshiba)
  - ASIR (adaptive statistical iterative reconstruction, GE)
  - iDose (Philips)
  - IRIS (image reconstruction in image space, Siemens)
  - VEO, MBIR (model-based iterative reconstruction, GE)
  - SAFIRE (sinogram-affirmed iterative reconstruction, Siemens)







#### Conventional reconstruction

at 100% dose



#### Iterative reconstruction and restoration

at 40% dose





# Conventional reconstruction at 100% dose

#### Iterative reconstruction and restoration at 40% dose





#### Conventional reconstruction

at 100% dose



#### Iterative reconstruction and restoration

at 40% dose







100% dose

50% dose

50% dose + IRIS

Image courtesy of Prof. Dr. Michael Lell, Erlangen, Germany



# Summary

- Analytical image reconstruction
  - is compute efficient
  - requires new solutions for new trajectories
  - is what most images are reconstructed with

#### Iterative image reconstruction

- requires much more computational effort
- allows to easily model constraints
- allows to incorporate prior knowledge

#### Practical modern solutions

- often are a combination of analytical and iterative recon
- are offered by the major manufacturers of diagnostic CT





# Anank You

MARL

This presentation will soon be available at www.dkfz.de/ct. The iteration videos were prepared by my colleague Christian Hofmann.