Spiral ASSR Std *p* = 1.0

Spiral EPBP Std *p* = 1.0

• 256 slices • (0/300)

Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004

Advantages of Cone-Beam Spiral CT

- Image quality nearly independent of pitch
- Increase
 - of scan speed
 - of z-resolution
- New applications
 - CT angiography
 - dynamic studies
 - virtual endoscopy
 - cardiac CT
 - DECT
 - ...

Today, complete anatomical regions are routinely scanned with cone-beam spiral CT within a few seconds with isotropic submillimeter spatial resolution.

Iterative Image Reconstruction

$$x^{2} = y$$
Model
$$x \rightarrow y$$

$$(x_{n} + \Delta x_{n})^{2} = y$$

$$x_{n}^{2} + 2x_{n}\Delta x_{n} + x_{n}^{2} = y$$

$$x_{n}^{2} + 2x_{n}\Delta x_{n} \approx y$$

$$\Delta x_{n} = \frac{1}{2}(y - x_{n}^{2})/x_{n}$$

$$x_{n+1} = x_{n} + \Delta x_{n}$$
Update equation

Modified from Johan Nuyts, "New image reconstruction techniques", ECR 2012

Influence of Update Equation and Model					
$0.5 (3 - x_n^2)/x_n$	$0.4(3-x_n^2)/x_n$	$0.5 (3 - x_n^{2.1}) / x_n$			
$x_0 = 1.$	$x_0 = 1.$	$x_0 = 1.$			
$x_1 = 2.$	$x_1 = 1.8$	$x_1 = 2.$			
$x_2 = 1.75$	$x_2 = 1.74667$	$x_2 = 1.67823$			
$x_3 = 1.73214$	$x_3 = 1.73502$	$x_3 = 1.68833$			
$x_4 = 1.73205$	$x_4 = 1.73265$	$x_4 = 1.68723$			
$x_5 = 1.73205$	$x_5 = 1.73217$	$x_5 = 1.68734$			
$x_6 = 1.73205$	$x_6 = 1.73207$	$x_6 = 1.68733$			
$x_7 = 1.73205$	$x_7 = 1.73206$	$x_7 = 1.68733$			
$x_8 = 1.73205$	$x_8 = 1.73205$	$x_8 = 1.68733$			
$egin{aligned} x_0 &= 1.\ x_1 &= 2.\ x_2 &= 1.75\ x_3 &= 1.73214\ x_4 &= 1.73205\ x_5 &= 1.73205\ x_6 &= 1.73205\ x_7 &= 1.73205\ x_8 &= 1.73205 \end{aligned}$	$egin{aligned} x_0 &= 1. \ x_1 &= 1.8 \ x_2 &= 1.74667 \ x_3 &= 1.73502 \ x_4 &= 1.73265 \ x_5 &= 1.73217 \ x_6 &= 1.73207 \ x_7 &= 1.73206 \ x_8 &= 1.73205 \end{aligned}$	$egin{aligned} x_0 &= 1. \ x_1 &= 2. \ x_2 &= 1.67823 \ x_3 &= 1.68833 \ x_4 &= 1.68723 \ x_5 &= 1.68734 \ x_6 &= 1.68733 \ x_7 &= 1.68733 \ x_8 &= 1.68733 \end{aligned}$			

 $x^2 = 3, \quad x_0 = 1, \quad x_{n+1} = x_n + \Delta x_n$

Analytical Reconstruction1. Problem $p(\vartheta, \xi) = \int dx dy f(x, y) \delta(x \cos \vartheta + y \sin \vartheta - \xi)$ 2. Solution $f(x, y) = \int_{0}^{\pi} d\vartheta p(\vartheta, \xi) * k(\xi) \Big|_{\xi = x \cos \vartheta + y \sin \vartheta}$ 3. Discretisation $f = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{K} \cdot \mathbf{p} = \mathbf{R}^{\mathrm{T}} \cdot (\mathbf{k} * \mathbf{p})$

Classical Iterative Reconstruction

1. Problem $p(\vartheta,\xi) = \int dx dy f(x,y) \delta(x\cos\vartheta + y\sin\vartheta - \xi)$

2. Discretisation

$$p = R \cdot f$$

3. Solution $\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R}^{2} \cdot \boldsymbol{1}}$

Linear System and CT System Matrix

dkfz.

Kaczmarz's Method

Kaczmarz's Method (2)

- Successively solve $\boldsymbol{r}_n \cdot \boldsymbol{f} = p_n$
- To do so, project onto the hyperplanes

$$oldsymbol{r}_n \cdot ig(oldsymbol{f} + \lambda oldsymbol{r}_nig) = p_n$$
 $\lambda = p_n - oldsymbol{r}_n \cdot oldsymbol{f}$
 $oldsymbol{f}_{ ext{new}} = oldsymbol{f} + \lambda oldsymbol{r}_n$
 $oldsymbol{f}_{ ext{new}} = oldsymbol{f} + oldsymbol{r}_n oldsymbol{r}_n \cdot oldsymbol{f}$

Repeat until some convergence criterion is reached

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{r}_n (p_n - \boldsymbol{r}_n \cdot \boldsymbol{f}_{\nu})$$

Kaczmarz's Method (3)

$$f_1$$
, $r_1 \cdot f = p_1$
 f_3 , f_1 , $r_1 \cdot f = p_1$
 f_3 , f_1 , f_2 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_1 , f_2 , f_1 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_1 , f_2 , f_1 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_2 , f_1 , f_2 , f_1 , f_2 ,

Kaczmarz in Image Reconstruction: Algebraic Reconstruction Technique (ART)

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{r}_n (p_n - \boldsymbol{r}_n \cdot \boldsymbol{f}_{\nu})$$

$$oldsymbol{f}_{
u+1} = oldsymbol{f}_{
u} + oldsymbol{R}^{\mathrm{T}} \cdot rac{oldsymbol{p} - oldsymbol{R} \cdot oldsymbol{f}_{
u}}{oldsymbol{R}^2 \cdot oldsymbol{1}}$$

Flavours of Iterative Reconstruction • ART $f_{\nu+1} = f_{\nu} + R^{T} \cdot \frac{p - R \cdot f_{\nu}}{R^{2} \cdot 1}$

• SART
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \frac{1}{\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{1}} \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R} \cdot \boldsymbol{1}}$$

• MLEM
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{p}}\right)}$$

• OSC
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} - e^{-\boldsymbol{p}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}\right)}$$

and dozens more ...

Iterative Region of Interest (IROI)

Iterative Reconstruction: Parameters

- Image/object representation
 - Pixel centers
 - Pixel area
 - Blobs
 - Sampling density (pixel size, pixel locations, ...)
- Forward model (forward projection)
 - Joseph-type, Bresenham-type, distance-driven-type, ...
 - Needle beam (infinitely thin ray), many needle beams per ray, ...
 - Beam shape (varying beam cross-section, angular blurring, ...)
 - Physical effects (beam hardening, scatter, motion, detector sensitivity, nonlinear partial volume effect, ...)

Objective function, update equation

- Statistical model (Gaussian, Poisson, shifted Poisson, ...)
- Regularisation (edge-preserving, ...)
- Artifact reduction
- Inverse model (backprojection)
 - Transpose of forward model
 - Pixel-driven backprojection
 - Filtered backprojection

 $C(\boldsymbol{f}) = \left(\boldsymbol{R}\cdot\boldsymbol{f} - \boldsymbol{p}\right)^2$

 $f(x,y) = \sum f_m b(x-x_m, y - y_m)$

Image Representation

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

$$b(x,y) = \bullet$$

Image Representation

$$b(x,y) =$$

Image Representation

b(x,y) =

Image Representation and Forward Model are Linked!

Joseph's forward projector

Objective Function: Gauß Model

Assume that the attenuation is Gaussian-distributed

$$\mathcal{L}(A) = \mathcal{N}(\sigma, \boldsymbol{r} \cdot \boldsymbol{f})$$

i.e. $P(A = a) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(a - \mu)^2/\sigma^2}$ with $\mu = \boldsymbol{r} \cdot \boldsymbol{f}$.
• Consequently, the likelihood for all *N* measured signals is ($\mu_n = r_n \cdot f$):

$$P(\boldsymbol{A} = \boldsymbol{a}, \boldsymbol{f}) = \prod_{n} P(A_n = a_n)$$

Before maximizing take the log, penalize roughness,

$$L(\boldsymbol{f}) = -\sum_{n} \left(\frac{a_n - \mu_n}{\sigma_n}\right)^2 - \beta R(\boldsymbol{f})$$

and then find the image *f* that maximizes *L*.

This leads us to minimizing

$$(\boldsymbol{R}\cdot\boldsymbol{f}-\boldsymbol{a})^{\mathrm{T}}\cdot\boldsymbol{D}\cdot(\boldsymbol{R}\cdot\boldsymbol{f}-\boldsymbol{a})$$

which means solving
$$\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{D} \cdot (\boldsymbol{R} \cdot \boldsymbol{f} - \boldsymbol{a}) = \boldsymbol{0}$$

 This must be done numerically (e.g. Jacobi method) and the solutions are often of type

$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \operatorname{diag}(\boldsymbol{u}) \cdot \boldsymbol{R}^{\mathrm{T}} \cdot \operatorname{diag}(\boldsymbol{v}) \cdot (\boldsymbol{a} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu})$$

• ART $f_{\nu+1} = f_{\nu} + R^{T} \cdot rac{p - R \cdot f_{\nu}}{R^{2} \cdot 1}$

• SART
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \frac{1}{\boldsymbol{R}^{\mathrm{T}} \cdot \boldsymbol{1}} \boldsymbol{R}^{\mathrm{T}} \cdot \frac{\boldsymbol{p} - \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}{\boldsymbol{R} \cdot \boldsymbol{1}}$$

and many more ...

Objective Function: Poisson Model

- Assume that the intensities are Poisson-distributed $\mathcal{L}(I) = \mathcal{P}(I_0 e^{-r \cdot f})$

which means $P(I=i) = \frac{\mu^i}{i!}e^{-\mu}$ with $\mu = I_0e^{-r} \cdot f$.

• Consequently, the likelihood for all *N* measured signals is ($\mu_n = I_0 e^{-r_n \cdot f}$):

$$P(\boldsymbol{I}=\boldsymbol{i},\boldsymbol{f}) = \prod_{n} P(I_n=i_n) = \frac{\mu_n^{\iota_n}}{i_n!} e^{-\mu_n}$$

Before maximizing take the log, penalize roughness,

$$L(\boldsymbol{f}) = \sum_{n} (i_n \ln \mu_n - \mu_n) - \beta R(\boldsymbol{f})$$

and then find the image *f* that maximizes *L*.

Update Equation: Poisson Model

• MLEM
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{p}}\right)}$$

• OSC
$$\boldsymbol{f}_{\nu+1} = \boldsymbol{f}_{\nu} + \boldsymbol{f}_{\nu} \frac{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} - e^{-\boldsymbol{p}}\right)}{\boldsymbol{R}^{\mathrm{T}} \cdot \left(e^{-\boldsymbol{R} \cdot \boldsymbol{f}_{\nu}} \boldsymbol{R} \cdot \boldsymbol{f}_{\nu}\right)}$$

• and many more ...

Native OSC Converges Slowly

(C=0, W=150)

Proper Initialization Helps!

OSC 4, initialized with constant value

OSC 4, initialized with matched FBP

OSC 4, initialized with smooth FBP

Insufficient image quality

Same noise as FBP

50% less noise than FBP

Ordered Subsets

- Divide one iteration into S sub-iterations.
- Each of these S subsets covers N/S projections.
- During one iteration all subsets and therefore all projections are used exactly once.
- Per iteration the volume is updated *S* times (once per sub-iteration).
- An up to S-fold speed-up can be observed.

Ordered Subsets Illustration for *N* = 32 Projections

Conventional procedure without subets (S = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with *S* = 8 sub-iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered Subsets

N_{Projections} = 32, Ordered Subsets: N_{Subsets} = 8

Simple Bit Reversal

Iterations

C = 0 HU, W = 1000 HU

Image Updates

C = 0 HU, W = 1000 HU

What Makes Iterative Recon Attractive?

- No need to come find an analytical solution
- Works for all geometries with only small adaptations
- Allows to model any effect
- Allows to incorporate prior knowledge
 - noise properties (quantum noise, electronic noise, noise texture, ...)
 - prior scans (e.g. planning CT, full scan data, ...)
 - image properties such as smoothness, edges (e.g. minimum TV)

- ...

Handles missing data implicitly (but not necessarily better)

Phase-correlated Feldkamp

High dimensional TV minimization¹

¹L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012

IOP PUBLISHING

INVERSE PROBLEMS

Inverse Problems 25 (2009) 123009 (36pp)

doi:10.1088/0266-5611/25/12/123009

TOPICAL REVIEW

Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

Xiaochuan Pan^{1,2}, Emil Y Sidky¹ and Michael Vannier¹

 ¹ Department of Radiology MC-2026, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
 ² Department of Radiation and Cellular Oncology, 5841 S. Maryland Avenue, Chicago, IL 60637, USA

Received 23 September 2009 Published 1 December 2009 Online at stacks.iop.org/IP/25/123009

Abstract

Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scappers has remained virtually constant for the past

Iterative != Iterative

In many cases artifact correction is iterative

- Higher order beam hardening correction
- Cone-beam artifact correction
- Scatter correction
- Practical "iterative reconstruction" approaches
 - often use empirical solutions
 - combine iterative with analytical reconstruction
 - combine iterative or analytical reconstruction with image restoration

Phase-correlated Feldkamp

Low dose phase-correlated (LDPC) recon¹

¹S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrieß, MedPhys 38(3), 2011

Iterative Reconstruction

- Aim: less artifacts, lower noise, lower dose
- Iterative reconstruction
 - Reconstruct an image.
 - Regularize the image.
 - Does the image correspond to the rawdata?
 - If not, reconstruct a correction image and continue.
- SPECT + PET are iterative for a long time.
- Until recently, the computational demand prohibited to use iterative recon in CT.
- First CT product implementations
 - AIDR (adaptive iterative dose recuction, Toshiba)
 - ASIR (adaptive statistical iterative reconstruction, GE)
 - iDose (Philips)
 - IRIS (image reconstruction in image space, Siemens)
 - VEO, MBIR (model-based iterative reconstruction, GE)
 - SAFIRE (sinogram-affirmed iterative reconstruction, Siemens)

Conventional reconstruction

at 100% dose

Iterative reconstruction and restoration

at 40% dose

Conventional reconstruction at 100% dose

Iterative reconstruction and restoration at 40% dose

Conventional reconstruction

at 100% dose

Iterative reconstruction and restoration

at 40% dose

100% dose

50% dose

50% dose + IRIS

Image courtesy of Prof. Dr. Michael Lell, Erlangen, Germany

Summary

- Analytical image reconstruction
 - is compute efficient
 - requires new solutions for new trajectories
 - is what most images are reconstructed with

Iterative image reconstruction

- requires much more computational effort
- allows to easily model constraints
- allows to incorporate prior knowledge

Practical modern solutions

- often are a combination of analytical and iterative recon
- are offered by the major manufacturers of diagnostic CT

Anank You

MARL

This presentation will soon be available at www.dkfz.de/ct. The iteration videos were prepared by my colleague Christian Hofmann.