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Motivation

• Cardiac CT imaging is routinely used 
for the diagnosis of cardiovascular 
diseases, especially those related to 
coronary arteries.

• Imaging of coronary arteries places 
high demands on the spatial and 
temporal resolution of the CT 
reconstruction.

• Motion artifacts may impair the 
diagnostic value of the CT 
examination.

CTCA image of the right coronary artery1

Significant 
stenosis

Nonsignificant 
stenosis

CTCA image of the left coronary artery2

[1] W. B. Meijboom et al., “64-Slice Computed Tomography Coronary Angiography in Patients With High, Intermediate, or Low Pretest Probability of Significant 
Coronary Artery Disease”, J. Am. Coll. Cardiol. 50 (15): 1469–1475 (2007).
[2] R. Leta et al., “Ruling Out Coronary Artery Disease with Noninvasive Coronary Multidetector CT Angiography before Noncoronary Cardiovascular Surgery”, 
Heart 258 (2) (2011).
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• For the right coronary artery (RCA) mean velocities 
between 35 mm/s and 70 mm/s have been measured 1,2.

Single 

source 

CT

Dual 

source
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Rotation time ~ 0.3 s ~ 0.3 s

Temporal 

resolution

(180° + fan)

~ 0.15 s ~ 0.075 s

Max. 

displacement

10.5 mm 5.25 mm

[1] Husmann et al., “Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate - Implications for CT Image Reconstruction”, 
Radiology, Vol. 245, Nov 2007.
[2] Achenbach et al., “In-plane coronary arterial motion velocity: measurement with electron-beam CT”, Radiology, Vol. 216, Aug 2000.

Motivation

 Motion compensation to reduce motion artifacts

Simulation without / with motion
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Prior Work

Multi-phase / registration-based 
approaches1,2,3,4

Partial angle-based approaches7,8.9

Limited angle approaches5,6
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[6] H. Schöndube et al., “Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution”, SPIE 2011: 7961: 79611N (2011).
[7] S. Kim et al., “Cardiac motion correction based on partial angle reconstructed images in x-ray CT”, Med. Phys. 42 (5): 2560–2571 (2015).
[8] J. Hahn et al., “Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data”, Med. Phys. 44 (11): 5795–5813 (2017).
[9] S. Kim et al., “Cardiac motion correction for helical CT scan with an ordinary pitch”, IEEE TMI 37 (7): 1587–1596 (2018).
[10] T. Lossau et al., “Motion estimation and correction in cardiac CT angiography images using convolutional neural networks”, Comput. Med. Imag. Grap. 76: 101640 (2019).
[11] S. Jung et al., “Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography”, IEEE Access 8: 81849–81863 (2020).

Deep learning-based approaches10,11

…
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…

Limitations

Multi-phase / registration-based 
approaches1,2,3,4

Partial angle-based approaches7,8.9

Limited angle approaches5,6 Deep learning-based approaches10,11

 Not optimal in terms of x-ray dose 
since several phases are required

 Challenging / time-consuming 
optimization

 Limited capability to improve 
temporal resolution

 Image-to-image translation may alter 
the shape of the coronary arteries
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Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

Basic idea

1. Use partial angle reconstructions 
(PARs) as input to a neural network. 

2. Train neural network to predict the 
parameters of a motion model that 
maps all PARs to the same motion 
state.

3. Use  a spatial transformer1 that 
applies the motion model to the 
PARs to enable an end-to-end 
training.

Spatial 
transformer1

MVF 
parameters

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017–2025 (2015).
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Deep PAMoCo
Generation of partial angle reconstructions

*Data courtesy of Dr. Stephan Achenbach 

*

CA 
segmentation

Patch 
extraction

Forward & 
backprojection

2. Segmentation of one of the main coronary 
artery (CA) branches (RCA, LM, LAD, CX) by 
an in-house algorithm. 

1. Initial short scan reconstruction of the 
complete volume.

3. Extraction of 128 × 128 patches 
centered at the coronary artery.

4. Forward projection and 
reconstruction of 25 (non-
overlapping) angular segments 
on a 128 × 128 × 15 voxel grid.
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Deep PAMoCo
Motion model

• The PAR             corresponding to the time point    is 
transformed by a global translation        : 

• The temporal dependency of       is modeled as a 
spline with 3 control points.
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 Motion is modeled by 3D 

displacement vectors 
 The center point is always set 

to zero: 
 Any other displacement 

vector is derived by cubic 
spline interpolation

 Thus, coronary artery motion 
is modeled by 6 parameters, 
i.e. the 3 coordinates of 
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Deep PAMoCo
Network architecture

Input: Partial angle reconstructions

Spatial 
transformer 

module
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Training Data Generation
Generation of prior images

• Removal of coronary artery (CA) / stent from CT 
reconstructions.

• Reinsertion of simulated CAs based on a triangular 
mesh of different shaped CAs.

• In total 25 different patients were used. CAs were 
inserted at different locations.

Add simulated CA with 
different shape and size 
using a triangular mesh 
that resembles real CAs

Inpainting
of CA
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Training Data Generation
Generation of partial angle images

• 3D global motion vector fields (MVF) are generated using 
a cubic spline interpolation between 3 random vectors.

• Motion is simulated by shifting the geometry vectors 
during forward projection according to the MVF.

• Here, the maximum velocity was set to 70 mm/s.

Motion simulation: forward       
projection + motion, reconstruction

Forward 
projection

…

6°

6°

Patch extraction & partial angle generation

6°

&
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Training & Evaluation

• 100 000 CT scans were simulated with random motion patterns 
and different shaped coronary arteries.

• For each case a ground truth image without motion was 
simulated.

• The samples were split into 80 % training data and 20 % testing 
data.

• The network was trained for 100 epochs using an Adam 
optimizer and the mean squared error between the prediction 
and the ground truth as loss function.

• The performance of the deep PAMoCo was also tested for real 
cardiac CT scans performed at a Siemens Somatom AS+.

• Motion-compensated images are compared against a 
conventional PAMoCo approach1 that transforms the partial 
angle reconstructions such that the image entropy of the final 
images is minimized.

[1] J. Hahn et al., “Motion compensation in the region of the coronary arteries based on partial angle reconstructions 
from short-scan CT data”, Med. Phys. 44 (11): 5795–5813 (2017).
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Results
Simulated data

C = 1000 HU, W = 1000 HU
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Results
Measurements, patient 1

C = 1000 HU, W = 1000 HU
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Results
Measurements, patient 2

C = 1000 HU, W = 1000 HU
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Results
Measurements, patient 3

C = 1100 HU, W = 1000 HU
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Conclusions

• The deep PAMoCo enables an end-to-end training 
of coronary artery motion compensation using a 
3D neural network.

• Neural network trained on simulated data also 
applies to measurements.

• In any case, motion artifacts could be reduced 
efficiently.

• The quality of the motion-compensated 
reconstructions is similar to conventional 
PAMoCo approach but can be applied in almost 
real-time (~ 1 s for a complete cardiac CT scan).
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Thank You!


