Bin-Combination-Based Noise Reduction for Metal Artifact Reduction in Photon Counting CT

Philip Trapp^{1,2}, Achim Byl^{1,2}, Laura Klein^{1,2}, Sarah Heinze², Heinz-Peter Schlemmer¹, Stefan Sawall¹, and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany

Motivation

- When using a photon counting (PC) detector, energy thresholds allow for spectral separation of data.
- Combined images can be constructed out of energy bin images e.g. via linear combinations, α-blending:

$$f_{\alpha}(\boldsymbol{r}) = \alpha f_{\mathrm{Bin1}}(\boldsymbol{r}) + (1-\alpha)f_{\mathrm{Bin2}}(\boldsymbol{r})$$

 $\alpha_1 < 0$: Low level of artifacts, low contrast-to-noise ratio (CNR) 0 < α_2 < 1: High level of artifacts, high CNR

To obtain a high CNR image with least artifacts.

Prior work:

 Yang et al., Dual-energy CT Reconstruction using Guided Image Filtering, 2016 IEEE Nuclear Science Symposium
Manhart et al., Guided Noise Reduction for Spectral CT with Energy-Selective Photon Counting Detectors, Proc. CT
Meeting 2014:91–94
Müller et al., Towards Material Decomposition on Large Field-of-View Flat Panel Photon-Counting Detectors — First invivo Results, Proc. CT Meeting 2016:479–482
Li et al., An effective noise reduction method for multi-energy CT images that exploits spatio-spectral features, Med. Phys. 44(5):1610–1623, 2017
Allner et al., Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography, Phys. Med. Biol. 61(10):3867-3884, 2016

Method

Proposed method: guided bilateral filter

• The filter kernels R_1 , R_2 , and D are chosen to be of truncated Gaussian shape with filter parameters σ_{r1} , σ_{r2} , and σ_{d} .

CounT CT System at the DKFZ

Gantry from a clinical dual source scanner

- Ultra-high-resolution (UHR) mode with two energy thresholds (25 and 90 keV)
- Head scan of a human corpse with dental implants (140 kV, 150 mAs)
- Torso scan of a pig cadaver with manually inserted hip total endoprostheses (TEPs) (140 kV, 225 mAs)
- A: conventional CT detector (500 mm FOV)
- **B:** Photon counting detector (275 mm FOV)

Experimental CT system, not commercially available.

Results: Reduced Artifacts with Improved CNR

 $\sigma_{r1} = 25 \text{ HU}$ $\sigma_d = 4 \text{ px}$ $\sigma_{r1} = 200 \text{ HU}$ $\sigma_{r2} = 10 \text{ HU}$ $\sigma_{d} = 4 \text{ px}$

dkfz.

Results: Conservation of Spatial Resolution

 $\sigma_{r1} = 25 HU$ $\sigma_{d} = 4 px$ $\sigma_{r1} = 200 \text{ HU}$ $\sigma_{r2} = 10 \text{ HU}$ $\sigma_{d} = 4 \text{ px}$

dkf-

Results: Comparison of Image Noise

 $\sigma_{r1} = 25 \text{ HU}$ $\sigma_d = 4 \text{ px}$ $\sigma_{r1} = 200 \text{ HU}$ $\sigma_{r2} = 10 \text{ HU}$ $\sigma_{d} = 4 \text{ px}$

CK

Results: Self-Guided Filter at Same Noise Level

 $\sigma_{r1} = 75 HU$ $\sigma_{d} = 4 px$ $\sigma_{r1} = 200 \text{ HU}$ $\sigma_{r2} = 10 \text{ HU}$ $\sigma_{d} = 4 \text{ px}$

dkf7

Results: Increasing Artifact and Noise Levels in the Pig Measurement

A) Artifact-reduced $\alpha_1 = -0.20$

B) CNR-maximized $\alpha_2 = 0.81$

Bilateral filtered A) (self-guided)

Proposed method on A) (guide: B))

sagittal

coronal

 $\sigma_{r1} = 65 \text{ HU}$ $\sigma_d = 4 px$

 $\sigma_{r1} = 200 \text{ HU}$ $\sigma_{r2} = 25 \text{ HU}$ $\sigma_d = 4 px$

Conclusions

- A guided bilateral filter is a useful tool to combine the possible benefits of spectral data (high CNR, low amount of artifacts).
- Image noise could be reduced by a factor of 5 while a low level of metal artifacts and a high spectral resolution is maintained.
- This improvement of image noise can be traded for a reduction of patient dose.
- The method of is not limited to PC CT but can be used whenever aligned spectral data is available (e.g. dual energy CT).

Thank You!

This work was supported in parts by the BMBF under grant number 13N14804.

This presentation is available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.

