CT-Technik

Prof. Dr. Marc Kachelrieß

Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Germany www.dkfz.de

Siemens 2.2.64=256-Schicht Dual-Source Kegelstrahl-Spiral-CT (2008)

EMI Parallelstrahlscanner (1972)

180 Projektionen in 300 s
2×160 Positionen pro View
384 B/s Datentransferrate
113 kB Datengröße

1152 Projektionen in 0,28 s 2.64×(736+480) 2-Byte Kanäle je Projektion 0,6 GB/s Datentransferrate typischerweise 5 GB Datengröße

Siemens 2.2.64=256-Schicht Dual-Source Kegelstrahl-Spiral-CT (2008)

EMI Parallelstrahlscanner (1972)

180 Projektionen in 300 s
2×160 Positionen pro View
384 B/s Datentransferrate
113 kB Datengröße

1152 Projektionen in 0,28 s 2.64×(736+480) 2-Byte Kanäle je Projektion 0,6 GB/s Datentransferrate typischerweise 5 GB Datengröße

GE LightSpeed

Philips Brilliance iCT

Toshiba Aquilion ONE

Siemens Definition (Duo, AS, AS+, Flash)

Was wird gemessen?

Polychromatische Radontransformation:

$$p(L) = -\ln \int dE \, w(E) \, e^{-\int dL \, \mu(\boldsymbol{r}, E)}$$

mit normiertem Detected Spectrum: $1 = \int dE w(E)$

Monochromatische N\u00e4herung:

 $p(L) \approx \int dL \,\mu(\mathbf{r}, E_{\text{eff}})$

p(L)

wobei die effektive Energie etwa 70 keV beträgt

Was wird dargestellt?

Fächerstrahlgeometrie (x-y-Ebene)

Messfeld mit Objekt

Röntgenröhre

Detektor (typ. 1000 Kanäle)

V

Vollständigkeit (x-y-Ebene)

Jeder Punkt des Objekts muss aus einem Winkelintervall der Länge 180° oder mehr gemessen werden.

V

Grundlegende Parameter (typische Werte moderner CT-Geräte)

- In-plane Auflösung: 0,4 ... 0,7 mm
- Nominelle Schichtdicke: $S = 0,5 \dots 1,5$ mm
- Effektive Schichtdicke: S_{eff} = 0,5 ... 10 mm
- Röhre (Maximalwerte): 100 kW, 140 kV, 800 mA
- Effektiver Röhrenstrom: mAs_{eff} = 10 mAs ... 1000 mAs
- Rotationszeit: *t*_{rot} = 0,27 ... 0,5 s
- Simultan akquirierbare Schichten: *M* = 16 ... 320
- Tischvorschub pro Rotation: $d = 1 \dots 150$ mm
- Pitchwert: *p* = 0,3 ... 1,5 (bis zu 3.4 bei DECT)
- Scangeschwindigkeit: bis zu 43 cm/s
- Zeitliche Auflösung: 50 ... 250 ms

Anforderungen Mechanik

- Kontinuierliche Datenaufnahme (Spiral, Fluoro, dynamische CT, …)
- Schnelle Rotationszeiten
 - Beschleunigung bei 550 mm mit 0,5 s: a = 9 g

- Mechanische Genauigkeit besser als 0,1 mm
- Kompaktes Design, niedrige Kosten, problemlose
 Installation und lange Serviceintervalle

Data courtesy of Schleifring GmbH, Fürstenfeldbruck, Germany and of rsna2011.rsna.org/exbData/1678/docs/Gantry_Subsystem.pdf

Anforderungen Röntgenquelle

- Spannungswerte zwischen 70 und 140 kV
- Augenblicksbelastung (typ. 50-100 kW)
- Dauerbelastung (typ. >5 kW)
- Kühlraten (typ. >1 MHU pro Minute)
- Schnell regelbarer Röhrenstrom (niedrige Trägheit)
- Muss den Zentrifugalkräften standhalten
- Kompaktes und robustes Design

Neue Röhrentechnologie: Keine Kühlzeiten

Konventionelle Röhre (Anode rotierend, Kathode und Gehäuse stationär)

Anode Photo courtesy of GE High Performance Röhre (Kathode, Anode und Gehäuse rotierend)

Direktgekühlte Röhre (Photo courtesy by Philips)

Anforderungen Detektor

- Mehrzeilendetektor
- Mehrschichtakquisition
- Samplingrate (typ. 300 μs)
- Abklingzeit (< 10 μs)
- Absorption
- Geometrische Effizienz
- Zählrate (bis zu 10⁹ cps^{*})
- Dynamikbereich (≥ 20 bit)

* bis zu 10⁵ Photonen pro Reading und 10⁴ Readings pro Sekunde

Anforderungen der CT: bis zu 10⁹ Röntgenphotonen pro Sekunde pro mm². Bei diesen Raten lassen sich Photonen nur mit Direktkonvertern zählen.

Mehrzeilendetektoren für Mehrschicht-CT 2009 bis 2012

- GE $64 \times 0,625 \text{ mm} = 40 \text{ mm} 0,35 \text{ s}$
- Philips $2.128 \times 0.625 \text{ mm} = 80 \text{ mm} \quad 0.27 \text{ s}$
- Siemens $2 \cdot 2 \cdot 64 \times 0,6 \text{ mm} = 38 \text{ mm} 0,28 \text{ s}$
- Toshiba 320 × 0,5 mm = 160 mm 0,35 s

modular and 2D tileable, 1D anti-scatter grid, modules arranged on the surface of a cylinder segment (Photo courtesy by Siemens)

"Nanopanel-Detektoren", modular und 2D kachelbar, vollfokusiertes 2D Streustrahlraster, Anordnung auf Kugeloberflächensegment (Photo courtesy by Philips)

SiO₂

WH H

SiO₂

ADC

S

"Stellar Detektor", modular und 2D kachelbar, 1D Streustrahlraster (Photo courtesy by Siemens)

Gefilterte Rückprojektion (FBP)

Faltung der Projektionen mit dem Faltungskern.
 Rückprojektion der Daten in das Bild:

Bildrauschen und Ortsauflösung werden durch Wahl des Rekonstruktionskerns beeinflusst.

Lineare Interpolation von Daten beiderseits der Rekonstruktionsebene, um einen virtuellen Kreisscan zu synthetisieren.

Ohne *z*-Interpolation

Mit *z*-Interpolation

Advanced Single-Slice Rebinning 3D und 4D Bildrekonstruktion für kleine Kegelwinkel

ASSR^{*}

- ist der erste praktikable Rekonstruktionsalgorithmus für klinische Kegelstrahl-CT
- reduziert 3D Kegelstrahldaten auf gekippte 2D Schichten
- ist in 16- und 64-Schicht Scannern implementiert

Nicht zu verwechseln mit dem PET-Algorithmus SSRB!

^{*} Kachelrieß et al. Med Phys 2000; 27(4):754-772

ASSR Prinzip II: Volumeninterpolation

Umrechnen der geneigten Bilder in parallele, transaxiale Bilder durch z-Interpolation

Kachelrieß et al. Med Phys 2000; 27(4):754-772

Patientenbilder mit ASSR

- Beste Performance
- Optimale Bildqualität
- 2D Hardware ausreichend
- 100% Dosisnutzung
- Pitch beliebig
 - Sensation 16
 - 0,5 s Rotation
 - 16×0,75 mm Kollimierung
 - Pitch 1,0
 - 70 cm in 29 s
 - 1,4 GB Rohdaten
 - 1400 Bilder

CT-Angiographie Sensation 64 Spiralscan mit 2.32×0,6 mm und 0,375 s

Bewegungsartefakte des Herzens

Herzbildgebung mit CT (Cardio-CT = phasenkorrelierte CT)

- Periodische Bewegung
- Synchronisation (EKG, Kymogramm, ...)
- Phasenkorrelierte Scans = Prospektives Gating
 - Geringer Erfolg in den 80er und 90er Jahren
 - Vielversprechend bei heutigen Scannern mit großen Kegelwinkeln

Phasenkorrelierte Rekonstruktion = <u>Retrospektives Gating</u>

- Einsegment-Verfahren, z.B. 180°MCD (Kachelrieß et al.)
- Zweisegment-Rekonstruktion, z.B. ACV (Flohr et al.)
- Mehrsegment-Rekonstruktion, z.B. 180°MCI (Kachelrieß et al., Goldstandard)
- Generationen
 - » Einschicht-Spiral-CT: 180 °CD, 180 °CI
 - » Mehrschicht-Spiral-CT: 180°MCD, 180°MCI
 - » Kegelstrahl-Spiral-CT: ASSR CD, ASSR CI
 - » Kegelstrahl-Spiral-CT mit großen Winkeln: EPBP
 - » Multi-Source Kegelstrahl-Spiral-CT: EPBP

(seit 1996¹)

(seit 1998²)

(seit 2000³)

(seit 2002⁴)

(seit 2005⁵)

Retrospektives Gating

Prospektives Gating

Standardscan + EKG-korrelierte Rekon

Standard Spiralscan mit geringem Pitchwert ($p \le f_H \cdot t_{rot}$) Phasenkorrelierte Rekonstruktion

EKG-getriggerter Scan + Standardrekon

EKG-getriggerter Sequencescan, Spiralscan (hoher Pitch) oder Kreisscan Standardrekonstruktion

Partial Scan Reconstruction

Multi-Segment Reconstruction

Kachelrieß, Ulzheimer, Kalender, Med. Phys. 27(8):1881-1902 (2000)

Maximaler Pitchwert bei voller Phasenselektivität

- Jeder Voxel muss mindestens genau so lange durchstrahlt werden wie ein Bewegungszyklus dauert
- Der Tischvorschub pro Bewegungszyklus darf nicht größer sein als die Kollimierung

$$p \leq f_{
m H} t_{
m rot}$$

• Beispielsweise folgt aus $t_{rot} = 0.5$ s und $f_{H} = 60$ bpm, dass p < 0.5 gewählt werden muss.

 Um so kleiner der Pitchwert, desto mehr Segmente können kombiniert werden und desto höher wird die eitauflösung

Cardio-Algorithmen sind phasenselektiv

Herzrate: 90 bpm

180°MLI

Volume Zoom, 4 × 2,5 mm, 0,5 s, 1998

Mehrsegmentrekonstruktion 180 °MCI, 90 bpm

Sensation 64, 2.32 × 0,6 mm, 0,33 s, 2004

Data courtesy of Stephan Achenbach

2.64×0.6 mm, 300 ms rotation, partial scan recon, 150 ms temporal resolution

Data courtesy of Dr. Michael Lell, Erlangen, Germany

Mehrgängige Scanner, Dual-Source-CT

Siemens SOMATOM Definition Flash Dual Source Kegelstrahl-Spiral-CT-Scanner

Data courtesy of Stephan Achenbach

Dual-Source-CT, 330 ms Rotation, Teilscanrekonstruktion, 83 ms Zeitauflösung

Data courtesy of Stephan Achenbach

Dual-Source-CT, 330 ms Rotation, Teilscanrekonstruktion, 83 ms Zeitauflösung

Dual-Source-CT Flash Mode 280 ms Rotation Teilscanrekonstruktion 70 ms Zeitauflösung Pitch = 3,2 (43 cm/s) 320 mAs, 100 kV 10,6 cm Scanrange DLP = 64 mGy·cm $D_{eff} = 0,89$ mSv

Data courtesy of Stephan Achenbach

Dual Source CT = Bestmögliche Cardio-CT

- Extrem hohe Zeitauflösung
- Kaum Bewegungsartefakte

Dual-Source-CT, 330 ms Rotation, Teilscanrekonstruktion, 83 ms Zeitauflösung

Data courtesy of Stephan Achenbach

Retrospektives Gating

Standardscan + EKG-korrelierte Rekon

Standard Spiralscan mit geringem Pitchwert ($p \le f_H \cdot t_{rot}$) Phasenkorrelierte Rekonstruktion $p \cdot T_{rot} / 2 \le Zeitauflösung \le T_{rot} / 2$ Funktioniert auch bei hohen Herzraten Dosismanagement: EKG-basierte TCM

> Volle Phasenselektivität Sehr robust (Arrhythmien) Gute Dosisnutzung

Prospektives Gating

EKG-getriggerter Scan + Standardrekon

EKG-getriggerter Sequencescan, Spiralscan (hoher Pitch) oder Kreisscan Standardrekonstruktion Zeitauflösung = T_{rot} / 2 Gut bei geringen Herzraten Dosismanagement: inhärent

Keine Phasenselektivität Ausreichend robust (Arrhythmien) Sehr gute Dosisnutzung

Dual Source CT = Bestmögliche Zweispektren-CT

- Unabhängig wählbare Röhrenströme
- Unabhängig wählbare Vorfilter
- Optimales Sampling

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander-University Erlangen-Nürnberg

Bildqualität

Ortsauflösung 1

In-plane Auflösung

z-Auflösung

Standard oder UHR, x/z

Sensation 64, 2.32×0,6 mm

Ortsauflösung 2

In-plane Auflösung

z-Auflösung

Sensation 64, 2.32×0,6 mm

Ortsauflösung 3 Point Spread Function (PSF), Slice Sensitivity Profile (SSP)

z-Auflösung als Funktion des Pitchwerts

120 kV, 200 mAs_{eff}, z-FFS, $t_{rot} = 1,0$ s, Head Routine, H50, 64×0,6 mm

Samplingeffekte bei der Bildrekonstruktion

MPR des European Spine Phantoms (25° Neigung gegen die z-Achse). Kalender WA, Polacin A, Süß C. Radiology 1994; 193:170-171

Es sind mindestens 2 Schichten pro rekonstruierter Schichtdicke zu rekonstruieren.

Nico Buls, Jessica Pagés, Johan de Mey, and Michel Osteaux

Health Physics, 85(2):165-173, August 2003, Cover Image

Image courtesy by Marc Kachelrieß, Heidelberg, Germany

Homoeopathic

URA NIUM ME

Pea, Repeat whe

BOERICKE &

1011 Arch Street,

SUNSHINE RADON HEALTH MINE

Diät-Speisehaus för vagetarische Kost und Rohkost

Reichenberg

Wienerstrasse 14, im Unionhaus,

S

37

3

Ser Par

3

-

13. 13. 13. 13.

3

Abhängigkeit: Bildqualität und Dosis

- Die Bildqualit\u00e4t wird durch Ortsaufl\u00f6sung und Kontrastaufl\u00f6sung (oder Bildpunktrauschen) beschrieben
- Das Bildpunktrauschen σ fällt mit der Wurzel aus der Dosis D

$$\sigma^2 = \text{Rauschen}^2 \propto \frac{1}{\text{Dosis}} \propto \frac{1}{\text{mAs}_{\text{eff}}}$$

Die Dosis steigt mit der vierten Potenz der Ortsauflösung bei gegebenem Objekt und gegebenem Bildpunktrauschen

$$\sigma^2 \propto rac{1}{\Delta x^4}$$

Dünne Schichten dünn dargestellt

0,5×0,5×0,5 mm³ C = 50 HU, W = 400 HU

Dünne Schichten dick dargestellt

IEM

0,5×0,5×10 mm³

"Reconsti
Der effektive mAs-Wert: Ein Dosismaß

 Das effektive Strom-Zeit-Produkt mAs_{eff} ist ein Maß f
ür die Anzahl der Quanten die zu einer z-Position beitragen:

$$mA = \frac{mAs_{eff} \cdot Pitch}{Rotationszeit}$$

• Die Dosis skaliert mit dem effektiven mAs-Wert:

 $\mathrm{Dose} \propto \mathrm{mAs}_{\mathrm{eff}}$

• Anmerkung: Das Inverse des Pitchwerts ist gleich der Anzahl der Umläufe, die zu einer z-Position beitragen.

Wasserphantom bei 165 mAs_{eff}

Scan 1 Pitch 0.6

165 mAs_{eff} ergeben: 198 mA, σ=13,0 HU Scan 2 Pitch 1,0

165 mAs_{eff} ergeben : 330 mA, σ = 12,4 HU

Waterphantom, DiffPitch IMP Erlanger 03.02.27-15:20:17-STD-1.3.12.2.1107.5.1.4.24703 Volume Zoom VA40C *01-Jan-1901 H-SP-CR 27-Feb-2003 15:50:27.32 4 IMA 4 SPI 4 SP -59.5 1 Min/Max: -46 /46 1 Mean/SD: -0.0 /13.0 kV 120 eff.mAs 165 eff.mAs 165 mA 461 TI 0.5 GT 0.0 SL 1.0/1.0/5.6 380 0/0 B30f L3C0 ¥ 200

> **165 mAs_{eff} ergeben :** 461 mA, σ= 13,0 HU

⇒ Rauschen, Bildqualität und Dosis gleichbleibend bei MSCT. Unabhängig vom Pitchwert!

Auf welchen mAs-Wert würden Sie reduzieren wenn der Patient 5 cm weniger Durchmesser hat?

a) auf 130 mAs b) auf 100 mAs c) auf 70 mAs

HVL_{eff} ist die effektive Halbwertsdicke (bezogen auf das Objekt)

marc.kachelriess@dkfz.de

Vielen Dank

Diese Präsentation ist in Kürze unter www.dkfz.de/ct abrufbar.