CT Technology: Clinical and Preclinical CT

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Is CT a Molecular Imaging Modality?

Imaging Modality	Molecular Sensitivity	Reference			
PET	10 ⁻¹¹ -10 ⁻¹² mol/L	1			
SPECT	10 ⁻¹⁰ -10 ⁻¹¹ mol/L	1			
Bioluminescence Imaging	10 ⁻⁹ -10 ⁻¹¹ mol/L	2			
Ultrasound	10 ⁻⁸ mol/L	3			
MRI	10 ⁻³ -10 ⁻⁵ mol/L	1			
СТ	10 ⁻³ mol/L	4			

- 1 C. S. Levin, "New Imaging Technologies to Enhance the Molecular Sensitivity of Positron Emission Tomography," Proc. IEEE 96(3), 439-467 (2008).
- 2 D. S. Wang, M. D. Dake, J. M. Park, and M. D. Kuo, "Molecular Imaging: A Primer for Interventionalists and Imagers," J. Vasc. Interv. Radiol. 17, 1405-1423 (2006).
- 3 G. Schmitz, "Ultrasonic imaging of molecular targets," Basic Res. Cardiol. 103, 174-181 (2008).
- 4 L. Fass, "Imaging and cancer: A review," Molecular Oncology 2, 115-152 (2008).

GE Revolution CT

Philips IQon Spectral CT

Siemens Somatom Force

Toshiba Aquilion ONE Vision

Basic Parameters (best-of values typical for modern scanners)

- In-plane resolution: 0.4 ... 0.7 mm
- Nominal slice thickness: *S* = 0.5 ... 1.5 mm
- Effective slice thickness: $S_{eff} = 0.5 \dots 10 \text{ mm}$
- Tube (max. values): 120 kW, 150 kV, 1300 mA
- Effective tube current: mAs_{eff} = 10 mAs ... 1000 mAs
- Rotation time: *T*_{rot} = 0.25 ... 0.5 s
- Simultaneously acquired slices: *M* = 16 ... 320
- Table increment per rotation: $d = 1 \dots 183$ mm
- Pitch value: *p* = 0.1 ... 1.5 (up to 3.2 for DSCT)
- Scan speed: up to 73 cm/s
- Temporal resolution: 50 ... 250 ms

Demands on the Mechanical Design

- Continuous data acquisition (spiral, fluoro, dynamic, ...)
- Able to withstand very fast rotation
 - Centrifugal force at 550 mm with 0.5 s: F = 9 g
 - with 0.4 s: *F* = 14 *g*
 - with 0.3 s: *F* = 25 *g*
 - with 0.2 s: *F* = 55 *g*
- Mechanical accuracy better than 0.1 mm
- Compact and robust design
- Short installation times
- Long service intervals
- Low cost

Data courtesy of Schleifring GmbH, Fürstenfeldbruck, Germany and of rsna2011.rsna.org/exbData/1678/docs/Gantry_Subsystem.pdf

Demands on X-Ray Sources

- Tube voltages from 70 to 150 kV
- High instantaneous power levels (typ. 50 to 120 kW)
- High continuous power levels (typ. > 5 kW)
- High cooling rates (typ. > 1 MHU/minute)
- High tube current variation (low inertia)
- Must withstand centrifugal forces
- Compact and robust design

Tube Technology

high performance tube (rotating cathode, anode + envelope, flat emitter) conventional tube (rotating anode, helical wire emitter) cooling oil cooling oil cathode anode anode В cathode anode cathode anode Photo courtesy of Siemens dkfz. Photo courtesy of GE

Demands on CT Detector Technology

- Available as multi-row arrays
- Very fast sampling (typ. 300 μs)
- Favourable temporal characteristics (decay time < 10 μs)
- High absorption efficiency
- High geometrical efficiency
- High count rate (up to 10⁹ cps^{*})
- Adequate dynamic range (at least 20 bit)

* in the order of 10⁵ counts per reading and 10⁴ readings per second

Detector Technology

Photo courtesy of Siemens Healthcare, Forchheim, Germany

Demands on Image Reconstruction

- Real-time
- Robust against artifacts
- Accurate and quantitative
- Use all the acquired data (dose!)
- Dose-efficient (use all acquired data appropriately)
- Adjustable image quality (noise vs. spatial resolution)

Filtered Backprojection (FBP)

Measurement: $p(\vartheta, \xi) = \int dx dy f(x, y) \delta(x \cos \vartheta + y \sin \vartheta - \xi)$ Fourier transform: $\int d\xi p(\vartheta, \xi) e^{-2\pi i \xi u} = \int dx dy f(x, y) e^{-2\pi i u (x \cos \vartheta + y \sin \vartheta)}$

This is the central slice theorem: $P(\vartheta, u) = F(u\cos\vartheta, u\sin\vartheta)$ Inversion: $f(x, y) = \int_{0}^{\pi} d\vartheta \int_{-\infty}^{\infty} du |u| P(\vartheta, u) e^{2\pi i u (x\cos\vartheta + y\sin\vartheta)}$ $= \int_{0}^{\pi} d\vartheta p(\vartheta, \xi) * k(\xi) \Big|_{\xi = x\cos\vartheta + y\sin\vartheta}$

Filtered Backprojection (FBP)

Filter projection data with the reconstruction kernel.
Backproject the filtered data into the image:

Smooth

Standard

Reconstruction kernels balance between spatial resolution and image noise.

Multi-Threaded CT Scanners and Dual-Source-CT

Siemens SOMATOM Definition Flash dual source cone-beam spiral CT scanner

Dual Source CT, Turbo Flash Mode 70 kV, DLP: 39 mGy cm \approx 0.55 mSv, calcified RCA

Data courtesy of Dr. Stephan Achenbach, Erlangen, Germany

Dual Energy CT: Examples

(Slide Courtesy of Siemens Healthcare)

Single DECT

Scan

DE bone removal

Virtual non-contrast and lodine image

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander University Erlangen-Nürnberg

Clinical CT (also used Preclinically)

Many specialized applications

- Dedicated injection protocols
- CT angiography (CTA)
- Cardiac CT and cardiac CT angiography (CCTA)
- Dual energy CT
- Perfusion CT
- CT colonoscopy
- ...

Sophisticated dose management

- Tube current modulation
- Automatic exposure control
- Protection of organs at risk
- Dose decreased by an order of magnitude
- Iterative image reconstruction
- ...

. . . .

- Image quality
 - Low contrast (5 HU), low noise (5 ... 50 HU)
 - submillimeter isotropic spatial resolution

Preclinical In-Vivo Micro-CT

Kromek MARS CT

NanoFocus XRay **NFR Polaris-G90**

CT Imaging TomoScope

Siemens Inveon PET/SPECT/CT

PerkinElmer Quantum FX

Bruker microCT SkyScan 1176

Sedecal Super Argus PET/CT

Scanco Medical VivaCT 40/75/80

TriFoil Imaging eXplore CT

Hitachi Aloka Medical LaTheta LCT-200

MiLabs U-SPECT⁺/CT

inviscan imaging IRIS PET/CT

For these systems almost no technical information (on the CT modality) is publicly available.

In-Vivo Micro-CT

- Many more vendors (13) compared to diagnostic CT
- Tiny market (<< 1% of sales) compared to diagnostic CT
- Vendors not experienced in diagnostic CT
- Vendors typically not specialists in CT imaging
- CT is often only the add-on, e.g. to PET or SPECT
- No quality assurance for preclinical imaging
- Customers only look at spatial resolution
- No image quality vs. dose competition among vendors
- Almost no innovations, no basic research
- The image quality and the types of available applications are insufficient from a diagnostic CT point-of-view!
- In-vivo micro-CT is still very useful, as we will see.

Basic Parameters (best-of values typical for in-vivo micro-CT scanners)

- Spatial resolution: 9 ... 80 μm
- Detector size: 1000×1000 ... 4000×4000
- Detector frame rate: 1 ... 100 fps
- X-ray tube
 - Stationary anode
 - Transmission or reflection
 - 5 ... 25 W, 20 ... 140 kV, 0.1 ... 0.5 mA
- Rotation time: *T*_{rot} = 1 s ... 1 h
- Temporal resolution: 0.5 s ... 1 h

Micro-PET/CT

¹⁸F labelled melanom cells

University of California, Davis

Detector Technology

Clinical CT Detector

Flat Detector

- Anti-scatter grids are aligned to the detector pixels
- Anti-scatter grids reject scattered radiation
- Detector pixels are of about 1.2 mm size
- Detector pixels are structured, reflective coating maximizes light usage and minimizes cross-talk
- Thick scintillators improve dose usage
- Gd₂O₂S is a high density scintillator with favourable decay times
- Individual electronics, fast read-out (5 kHz)
- Very high dynamic range (10⁷) can be realized

- Anti-scatter grids are not aligned to the detector pixels
- The benefit of anti-scatter grids is unclear
- Detector pixels are of about 0.2 mm size
- Detector pixels are unstructured, light scatters to neighboring pixels, significant cross-talk
- Thick scintillators decrease spatial resolution
- Csl grows columnar and suppresses light scatter to some extent
- Row-wise readout is rather slow (25 Hz)
- Low dynamic range (<10³), long read-out paths

Dose Efficiency

	Clinical CT (120 kV)		Flat Detector CT (120 kV)			Micro CT (60 kV)			
Material	Gd_2O_2S			Csl			Csl		
Density	7.44 g/cm ³		4.5 g/cm ³			4.5 g/cm ³			
Thickness	1.4 mm		0.6 mm		0.3 mm				
Manufacturer	Siemens		Varian			Hamamatsu			
Water Layer	0 cm	20 cm	40 cm	0 cm	20 cm	40 cm	0 cm	4 cm	8 cm
Photons absorbed	98.6%	97.7%	96.7%	80.0%	69.8%	62.2%	85.3%	85.6%	85 8%
Energy absorbed	94.5%	91.4%	88.7%	66.6%	55.4%	48.3%	67.1%	65.2%	64.2%

Absorption values are relative to a detector of infinite thickness.

Dynamic Range in Flat Detectors

	Saturation-to-noise range			X-ray exposure range				Digital range	
	Electronic	Saturation	Dynamic	Quantum	Saturation	Dynamic	Eff. bit	Quantization	Eff. bit
	noise	signal	range	limited	exposure	range	depth	range	depth
	(ADU)	(ADU)		exposure	(µR)		(bits)		(bits)
			_	(µR)					
No binning, gain 2	A1	B1	B1/A1	A2	B2	C2=B2/A2	D2=lb(C2)	B1:1	lb(B1)
Dynamic gain	5.32	80500	15100	2.75	3550	1291	10.3	80500:1	16.3
switching									
0.5 pF fixed	5.32	14500	2700	2.75	595	216	7.8	14500:1	13.8
4 pF fixed	3.57	14800	4150	35.7	4200	118	6.9	14800:1	13.8
<u>2x2 binning, gain 1</u>									
Dual gain readout	4.33	80100	18500	1.00	1800	1800	10.8	80100:1	16.3
Dynamic gain	4.37	84200	19300	1.03	2062	2002	11.0	84200:1	16.4
switching									
0.5 pF fixed	4.37	14300	3300	1.03	311	302	8.2	14300:1	13.8
4 pF fixed	3.14	14800	4700	15.6	2104	135	7.1	14800:1	13.8
0.5 pF fixed, gain 2	7.25	12900	1700	0.71	125	176	7.5	12900:1	13.6
(fluoroscopy mode)									

Table 2 4030CB dynamic range in available imaging modes

A2 is defined as the exposure where Quan up bise=ElectronicNoise.

Table taken from [Roos et al. "Multiple gain ranging readout method to extend the dynamic range of amorphous silicon flat panel imagers," *SPIE Medical Imaging Proc.*, vol. 5368, pp. 139-149, 2004]. Additional values were added, for convenience.

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

Integrating vs. Photon Counting Detector Technology

Summary

- Technology that is mature in diagnostic CT does not arrive in micro-CT systems.
- Micro-CT is often just used as an anatomical reference.
- Still, micro-CT is a very useful tool.

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.