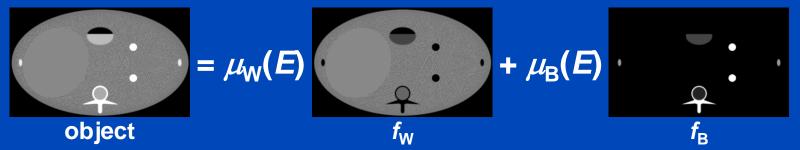
Zweispektren-CT: Lassen sich Metallartefakte durch Berechnung pseudomonochromatischer Bilder entfernen?

Stefan Kuchenbecker¹, Sebastian Faby¹, Sören Schüller¹, Matthias Baer¹, Michael Lell², and Marc Kachelrieß^{1,3}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University Clinics Erlangen, Germany ³Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany



DECT and Pseudo Monochromatic Imaging Pseudo monochromatic imaging is a linear combination of DECT $f_{\rm L}$ and $f_{\rm H}$: $f_{\alpha} = (1 - \alpha) f_{\rm L} + \alpha f_{\rm H}$ n 100 kV, $\alpha = 0$, E = 67 keV 100 kV, $\alpha = 0$, E = 67 keV **DECT** spectra f_{I} E/keV (C/W) in HU (40/400)(0/800) $\alpha(E)$ 140 kV, α = 1, *E* = 93 keV 140 kV, α = 1, *E* = 93 keV f_H (40/400)(0/800) $\alpha = 1.50$, E = 140 keV α = 1.67, *E* = 221 keV 80 100 120 140 160 180 20 40 60 E/keV f_{α} (40/400) (0/800)

0

Prerequisites

 Basis functions *f*(*r*) of attenuation μ in a position *r* are set to water W and bone B.

 A measured ray consists of a spectrum w(E) and is attenuated by the object

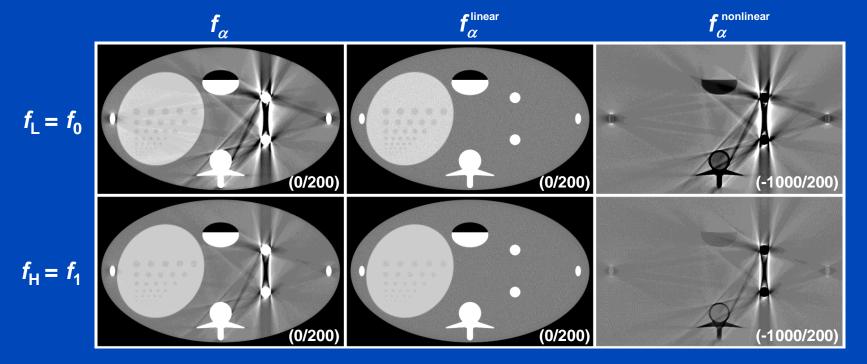
 $q_{\rm L} = -\ln \int dE \, w_{\rm L}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$ $q_{\rm H} = -\ln \int dE \, w_{\rm H}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$

*p*_W and *p*_B are the line integrals of the ray intersecting the object.

Monochromatic Imaging

• Pseudo monochromatic imaging $f_{\alpha} = (1 - \alpha) f_{\rm L} + \alpha f_{\rm H}$

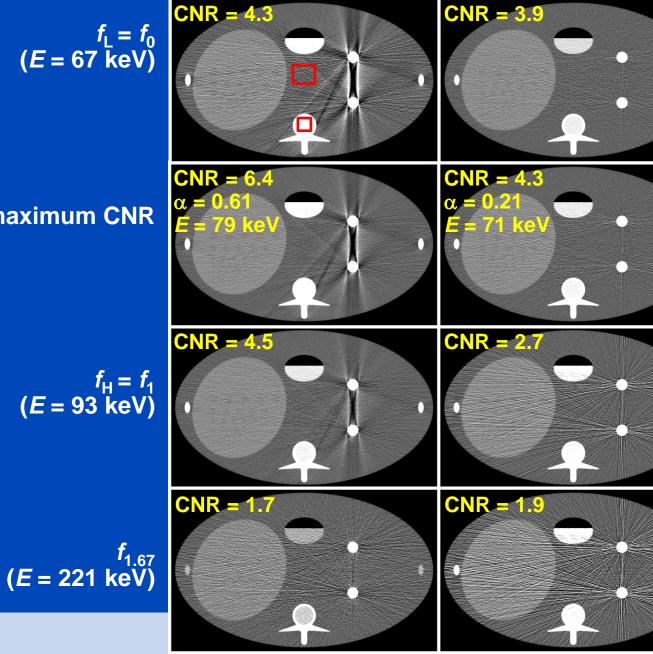
- Image-based postprocessing (reconstructs q_L and q_H)
- Provided in clinical DECT scanners
- Virtual monochromatic imaging $g_{\alpha} = (1 \alpha) g_{L} + \alpha g_{H}$
 - Rawdata-based preprocessing (reconstructs p_{W} and p_{B})
 - Not available in clinical DECT systems
- True monochromatic imaging
 - Would require monochromatic x-rays not applicable here


$$q_{\rm L} = -\ln \int dE \, w_{\rm L}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$$

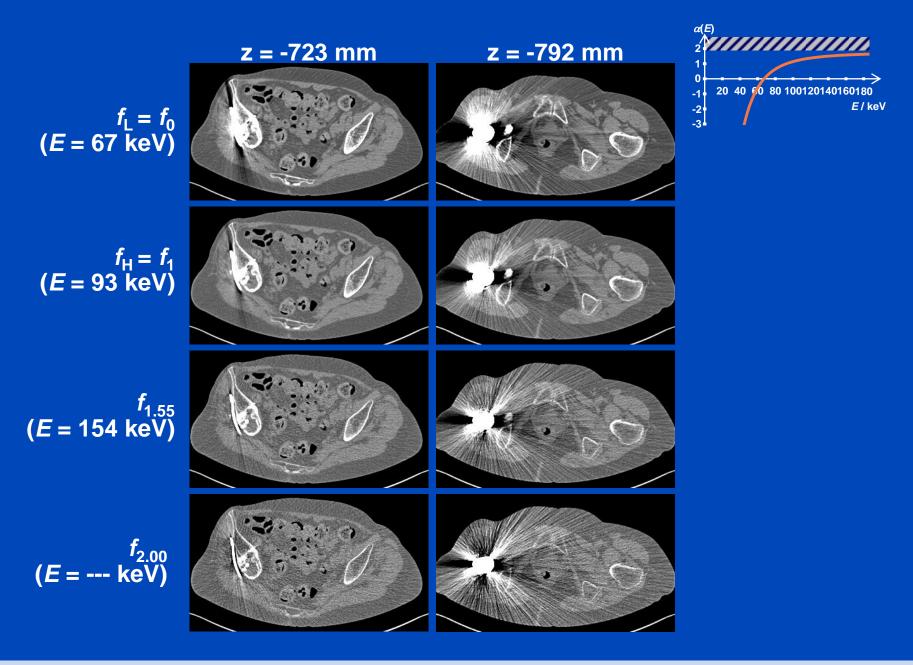
$$q_{\rm H} = -\ln \int dE \, w_{\rm H}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$$

Series Expansion

Series expansion of the polychromatic attenuation:


$$q_{j} = -\ln \int dE \, w_{j}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E) = \sum_{kl} c_{jkl} p_{\rm W}^{k} p_{\rm B}^{l}$$

pseudo monochromatic i. virtual monochromatic i. image-based processing rawdata-based processing



maximum CNR

C = 40 HU,*W* = 400 HU

C = 0 HU, W = 800 HU

Conclusion

- Pseudo monochromatic imaging
 - is unable to remove metal artifacts but reduces them in special cases.
 - reduces CNR.
- Rawdata-based methods should be preferred.
- Additional information of DECT in comparison to single energy CT should rather be used for spectral imaging than for artifact reduction.

Thank You!

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grants KA 1678/5-1 and LE 2763/1-1.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

