Stack Transition Motion Compensation in Sequential and in Cardiac CT

Sergej Lebedev^{1,2,3}, Karl Stierstorfer¹, and <u>Marc Kachelrieß^{2,3}</u>

¹Siemens Healthineers, Forchheim, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany ³University of Heidelberg, Germany

SIEMENS

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Cardiac CT

- Prospective or retrospective ECG-gating
- Low pitch sequence or spiral CT scans
- Reconstructions yield sub volumes (stacks) corresponding to the same heart beat and phase.
- The depth of the stacks depends on the collimation, pitch value, and heart beat.
- The stacks have a longitudinal overlap.
- Stack size and overlap values depend on pitch, heart rate, and heart rate variability.

- The final CT volume is assembled from the stacks.
- The stack transition, from which the next stack is used, can theoretically be set to any position within the stack overlap.
- A blending between the stacks can also be performed.

- The final CT volume is assembled from the stacks.
- The stack transition, from which the next stack is used, can theoretically be set to any position within the stack overlap.
- A blending between the stacks can also be performed.

- The final CT volume is assembled from the stacks.
- The stack transition, from which the next stack is used, can theoretically be set to any position within the stack overlap.
- A blending between the stacks can also be performed.

- The final CT volume is assembled from the stacks.
- The stack transition, from which the next stack is used, can theoretically be set to any position within the stack overlap.
- A blending between the stacks can also be performed.

Stack Transition Artifacts

- Irregular motion leads to stacks that do not represent exactly the same volume.
- Discontinuities at stack transitions arise when stitching the stacks together to yield the complete CT volume.

Stack Transition Artifacts

- Irregular motion leads to • stacks that do not represent exactly the same volume.
- Discontinuities at stack transitions arise when stitching the stacks together yield the

• Given two stacks $f_1(r)$ and $f_2(r)$, compute a DVF d(r) that will symmetrically register them.

 $g_1(\overline{oldsymbol{r}})=f_1(oldsymbol{r}+oldsymbol{d}(\overline{oldsymbol{r}}))$ $g_2(oldsymbol{r})=f_2(oldsymbol{r}-oldsymbol{d}(oldsymbol{r})).$

- The deformed stacks $g_1(r)$ and $g_2(r)$ need to be as similar as possible in the overlap region.
- The DVFs shall be smooth throughout the whole volume.

1. Evenly distribute control points (CPs) in the center plane of each overlapping region.

- 1. Evenly distribute control points (CPs) in the center plane of each overlapping region.
- 2. Look for the most similar sub volume (patch) pairs at opposite offsets from a CP within the two stacks.

- Evenly distribute control points (CPs) in the center plane of each overlapping region.
- 2. Look for the most similar sub volume (patch) pairs at opposite offsets from a CP within the two stacks.
- 3. Invert the offset vectors to get deformation vectors for a source driven transformation (at the CPs).

- 1. Evenly distribute control points (CPs) in the center plane of each overlapping region.
- 2. Look for the most similar sub volume (patch) pairs at opposite offsets from a CP within the two stacks.
- 3. Invert the offset vectors to get deformation vectors for a source driven transformation (at the CPs).
- 4. In order to get a smooth DVF on the central plane perform a bilinear interpolation in *x* and *y*.
- 5. Finally, perform a linear interpolation in *z*.

DVF Interpolation along *z*

 $g_s(\mathbf{r}) = f_s\left(\mathbf{r} - \frac{z_s - z}{z_s - z_{s-1}} d_{s-1}(x, y, z_{s-1}) + \frac{z - z_{s-1}}{z_s - z_{s-1}} d_s(x, y, z_s)\right)$

DVF Interpolation along *z*

$$g_s(\mathbf{r}) = f_s \left(\mathbf{r} - \frac{z_s - z}{z_s - z_{s-1}} \mathbf{d}_{s-1}(x, y, z_{s-1}) + \frac{z - z_{s-1}}{z_s - z_{s-1}} \mathbf{d}_s(x, y, z_s) \right)$$

Methods Symmetric Patch Matching

- Ideally the patches are matched based on anatomical landmarks.
- Patches can be placed on either side of a control point in and outside the overlap region (cases A, B, and D)
- Patches must remain inside the stack and there is a maximum allowed displacement
- If an anatomical landmark is located outside one of the stacks they cannot be matched (case C).

Parameters

STAR parameters

- Similarity metric: Sum of squared differences
- Patch size: 15×15×2...5 mm³ (overlap/2)
- Patch sampling: 10×10 mm²
- Number of control points: 16×16×1
- DVF vectors restricted to 6 mm length. Thus, deformations of up to 12 mm are permitted.

Scan parameters

- Siemens Somatom Definition Flash and AS+
- Standard partial scan WFBP reconstructions
- 285 ms rotation time
- 92...374 mAs_{eff}
- 80...125 kV
- 7...82 mGy CTDI_{vol}
- 110...1254 mGy cm DLP

SIEMENS

Sagittal slices in 8 mm increments.

Conclusions on STAR

- STAR improves image quality considerably.
- Some stack transition artifacts may remain.
- Variations in gray value for the same tissue will be addressed in the future.
- DVFs obtained by our patch-based STAR are useful to initialize a demons-based STAR algorithm*.

* Sergej Lebedev, Eric Fournie, Karl Stierstorfer, and Marc Kachelrieß. Stack transition artifact removal (STAR) for cardiac CT using a symmetric demons algorithm. Conference Program of the 5th International Conference on Image Formation in X-Ray Computed Tomography, May 2018

Thank You!

This presentation will soon be available at www.dkiz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkiz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.