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Photon-Counting CT Enables 
Visualization of Small Details

Reconstruction kernel (B70) corresponding 
to a sharp kernel of conventional energy-

integrating CT, e.g. Somatom Flash

Data scanned at photon-counting CT 
Naoetom Alpha reconstructed with a sharp 

kernel (Br96u).



Energy-Integrating vs.
Photon-Counting Detectors
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Photon-counting detector has several subpixels between lamellae of ASG



Properties of 
Photon-Counting Detectors

• Smaller detector pixels
– necessary to avoid pile up effect

– can deliver ultra high resolution imaging

– less dose for conventional spatial resolution1 (“small pixel effect”)

• No electronic noise
– advanced image quality in obese patients and low-dose scans

• No downweighting of lower energy quanta
– improved image contrast

– less dose due to increased iodine CNR2 (“iodine effect”)

• Intrinsic spectral sensitivy 
– established dual energy applications available in any scan

[1] Klein, Kachelrieß, Sawall et al. “Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed 
Tomography.” Investigative Radiology vol. 55(2): 111-119, 2020. 
[2] Sawall, Kachelrieß et al. “Iodine Contrast-to-Noise Ratio Improvement at Unit Dose and Contrast Media Volume Reduction in Whole-Body Photon-
counting CT.” European journal of radiology vol. 126: 108909, 2020.



ASG

Photon-counting
detector
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Primary radiation

Scatter measured by the detector

Scatter attenuated by the ASG



Conventional ASG
Each pixel

surrounded
by ASG 

Energy-integrating
detector

Coarse ASG 
Several pixels  
surrounded

by ASG 

The coarse ASG leads to changes in scatter intensity between neighboring 
pixels, depending on the incident angle of the photon.
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Scatter for Coarse ASG



Scatter for Coarse ASGFour subpixels (S)
merged to one 
macropixel (M)
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Scatter distribution averaged over all detector rows 
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Scatter for Coarse ASG
Scatter distribution averaged over all detector rows 
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Scatter for Coarse ASG

Scatter distribution over center detector column
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Scatter Artifacts of Coarse ASG

Coarse ASG

Reconstruction: C = 40 HU, W = 300 HU

Coarse ASGs can lead to scatter-induced moiré artifacts.

Conventional ASG



Deep Scatter Estimation (DSE)
• Use a deep convolutional neural network to estimate scatter using the 

acquired projection data as input.1,2

• Train the network to predict Monte Carlo scatter estimates based on the 
acquired projection data.1,2

• DSE outperforms other scatter estimation techniques.1,2,4,5

• DSE is much faster than the Monte Carlo simulation.1,2,5

• DSE can also be trained with measured scatter data.3

• DSE shows great potential to correct for cross-scatter in dual source CT.4,5

Scatter profile from Monte Carlo simulation

Scatter prediction from deep scatter estimation

Time: 65 s per projection = 14 h per circle scan

Time: 3.3 ms per projection = 4 s per circle scan 

[1] J. Maier, M. Kachelrieß et al. “Deep Scatter Estimation (DSE)“, SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018.

[2] J. Maier, M. Kachelrieß et al. “Robustness of DSE“, Med. Phys. 46(1):238-249, January 2019.

[3] J. Erath, M. Kachelrieß et al “Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT”, RSNA 2019
[4] J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß,  “Deep Scatter Correction in DSCT”, CT Meeting August 2020.
[5] J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß, “Deep Learning-Based Forward and Cross-Scatter Correction in DS CT” Med. Phys. 2021



Training and Validation Data

• Monte Carlo simulation with the geometry of the photon counting CT 
scanner NAEOTOM Alpha (Siemens Healthineers)

• 12 patients for training and 4 for validation

• 14 z-positions with 36 projections each simulated for each patient

• 8064 paired scatter and primary data pairs

• Simulation of coarse ASG with macro pixel with detector dimension of 
1376 × 144 pixels

• 6 different macro pixels locations

• Smooth only across same macro-pixel locations

14 z positions
z1

z14

…

70 cm

Training and validation patients with high 
variety and different clinical situations, 
important to consider scatter-to-primary ratio

Example of validation data set:
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688×48×32

344×24×64

172×12×128

86×6×256 

43×3×512

Detector dimension 
1376×144
Input mapping

Input: 6 channels

Merging 6 different channels to 
obtain total scatter correction term

Output: 6 channelsDifferent macro pixel locations

M(0,0)

M(0,1) 

M(1,0)

M(1,1)

M(0,2)

M(1,2)

Each channel 
corresponds to a 
different pixel position 
between the lamellae of 
the ASG

Network Architecture

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

Unpooling + depth concat.

Skip connection



Predicton of Scatter Intensity
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Scatter distribution of left and right columns averaged over all detector rows 

MC Simulation left columns

DSE left columns

MC Simulation right columns

DSE right columns

Detector columns



Uncorrected

MAE = 8.4 HU

DSE

MAE = 0.9 HU

Ground Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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MAE = 8.0 HU MAE = 0.6 HU

Uncorrected DSEGround Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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Conclusions

• Smaller detector pixels and an coarse anti-scatter 
grid can lead to moiré artifacts.

• Scatter-induced moiré effect can be well corrected 
with deep learning-based scatter correction.

• With the proposed DSE algorithm the mean absolute 
error (MAE) is reduced from about 9 HU to under 1 
HU on average.

• The amplitude of the scatter-induced moiré effect can 
be corrected from 30 HU to less than 5 HU.

• Next step: apply deep learning-based correction for 
measurements. 



This presentation is available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international PhD or Postdoctoral 

Fellowship programs (marc.kachelriess@dkfz.de). 
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