Deep Scatter Estimation (DSE) for High Scatter Frequencies caused by Coarse Anti Scatter Grids in Clinical CT

Julien Erath^{1,2,3}, Joscha Maier¹, Eric Fournié², Martin Petersilka², Karl Stierstorfer², and Marc Kachelrieß^{1,3}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Siemens Healthineers, Forchheim, Germany ³Ruprecht-Karls-Universität, Heidelberg, Germany

www.dkfz.de/ct

Photon-Counting CT Enables Visualization of Small Details

Reconstruction kernel (B70) corresponding to a sharp kernel of conventional energyintegrating CT, e.g. Somatom Flash Data scanned at photon-counting CT Naoetom Alpha reconstructed with a sharp kernel (Br96u).

Energy-Integrating vs. Photon-Counting Detectors

Photon-counting detector has several subpixels between lamellae of ASG

Properties of Photon-Counting Detectors

Smaller detector pixels

- necessary to avoid pile up effect
- can deliver ultra high resolution imaging
- less dose for conventional spatial resolution¹ ("small pixel effect")
- No electronic noise
 - advanced image quality in obese patients and low-dose scans
- No downweighting of lower energy quanta
 - improved image contrast
 - less dose due to increased iodine CNR² ("iodine effect")
- Intrinsic spectral sensitivy
 - established dual energy applications available in any scan

[1] Klein, Kachelrieß, Sawall et al. "Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed Tomography." *Investigative Radiology* vol. 55(2): 111-119, 2020.

[2] Sawall, Kachelrieß et al. "Iodine Contrast-to-Noise Ratio Improvement at Unit Dose and Contrast Media Volume Reduction in Whole-Body Photoncounting CT." *European journal of radiology* vol. 126: 108909, 2020.

Scatter for Coarse ASG

The coarse ASG leads to changes in scatter intensity between neighboring pixels, depending on the incident angle of the photon.

Healthineers

Scatter for Coarse ASG

Healthineers

Scatter for Coarse ASG

Scatter distribution over center detector column

Scatter Artifacts of Coarse ASG

Coarse ASGs can lead to scatter-induced moiré artifacts.

Reconstruction: C = 40 HU, W = 300 HU

Deep Scatter Estimation (DSE)

- Use a deep convolutional neural network to estimate scatter using the • acquired projection data as input.^{1,2}
- Train the network to predict Monte Carlo scatter estimates based on the • acquired projection data.^{1,2}
- DSE outperforms other scatter estimation techniques.^{1,2,4,5} •
- DSE is much faster than the Monte Carlo simulation.^{1,2,5} •
- DSE can also be trained with measured scatter data.³ •
- DSE shows great potential to correct for cross-scatter in dual source CT.4,5 •

- [1] J. Maier, M. Kachelrieß et al. "Deep Scatter Estimation (DSE)", SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018.
- [2] J. Maier, M. Kachelrieß et al. "Robustness of DSE", Med. Phys. 46(1):238-249, January 2019.
- [3] J. Erath, M. Kachelrieß et al "Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT", RSNA 2019
- [4] J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß, "Deep Scatter Correction in DSCT", CT Meeting August 2020.
 [5] J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß, "Deep Learning-Based Forward and Cross-Scatter Correction in DS CT" Med. Phys. 2021

Training and Validation Data

- Monte Carlo simulation with the geometry of the photon counting CT scanner NAEOTOM Alpha (Siemens Healthineers)
- 12 patients for training and 4 for validation
- 14 z-positions with 36 projections each simulated for each patient
- 8064 paired scatter and primary data pairs
- Simulation of coarse ASG with macro pixel with detector dimension of 1376 × 144 pixels
- 6 different macro pixels locations
- Smooth only across same macro-pixel locations

Health

Training and validation patients with high variety and different clinical situations, important to consider scatter-to-primary ratio

Example of validation data set:

M(0,0)M(1,0)M(0,1)M(1,1)M(0,2)M(1,2)

Network Architecture

Predicton of Scatter Intensity

Scatter distribution of left and right columns averaged over all detector rows

Ground Truth

Uncorrected

Conclusions

- Smaller detector pixels and an coarse anti-scatter grid can lead to moiré artifacts.
- Scatter-induced moiré effect can be well corrected with deep learning-based scatter correction.
- With the proposed DSE algorithm the mean absolute error (MAE) is reduced from about 9 HU to under 1 HU on average.
- The amplitude of the scatter-induced moiré effect can be corrected from 30 HU to less than 5 HU.
- Next step: apply deep learning-based correction for measurements.

This presentation is available at www.dkfz.de/ct. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

