Context-Sensitive Organ-Specific Evaluation and Analysis of DECT Images

Sabrina Dorn^{1,2}, Shuqing Chen³, Francesco Pisana^{1,2}, Mahmut Özdemir^{1,2}, Joscha Maier^{1,2}, Michael Knaup¹, Stefan Sawall^{1,2}, Andreas Maier³, Michael Lell⁴, and <u>Marc Kachelrieß^{1,2}</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany
²University of Heidelberg, Germany
³Friedrich-Alexander University Erlangen-Nürnberg, Germany
⁴Hospital Nürnberg, Paracelsus Medical University

Gout

Rho/Z

Xenon

Monoenergetic Plus

Optimum Contrast

Monoenergetic

Heart PBV

Lung Nodules

Calculi Characterization

Brain Hemorrhage

Direct Angio

Virtual Unenhanced

Bone Marrow

Musculoskeletal

Lung Analysis

Hardplaque Display

Syngo.CT DECT application examples. Virtual unenhanced contains liver VNC, lung analysis contains lung PBV. Courtesy of Siemens Healthineers, Forchheim, Germany

To facilitate radiologists' workflow by combining various dual energy applications into an automatic analysis tool.

Method

- Prior anatomical knowledge: 3D fully convolutional network¹
 - Segmentation of dual energy data
 - Cascaded neural network architecture
 - 1. Detection of abdominal cavity
 - 2. Final detection of organ boundaries

- Automatically segment liver, kidneys, spleen, lung, bone, and aorta.
- Thresholding remaining voxels into muscles, fat, and vasculature.
- Currently, manual corrections are necessary (until today).

Method

- Segmentation delivers a binary mask for each organ.
- Use masks to allow for
 - Standardization of DE evaluation
 - Automatic placement and evaluation of region-of-interests (ROIs)
 - Automatic patient-specific calibration
 - Automation
 - Automatic selection of DE application for specific organs
 - Simultaneous DE evaluation of varying applications

Dual Energy Evaluation Methods

Most of the DE applications rely on two basic strategies (Siemens Syngo.Via):

Material decomposition

Material classification

- LiverVNC, virtual unenhanced
- Lung perfused blood volume

....

- Body bone removal
- Kidney stone discrimination

•

Dual Energy Evaluation Methods

Most of the DE applications rely on two basic strategies (Siemens Syngo.Via):

Material decomposition

Material classification

- Calibration of reference points (fat, soft tissue, blood etc.) and relative contrasts of iodine and calcium (*RelCM, RelCa*) needed.
 - Manually placed region-of-interests (ROIs)

Relative Contrast

Two water-iodine mixtures of unknown mixing ratio

 $CT_{1}(E) = (1 - w_{1})CT_{W}(E) + w_{1}CT_{I}(E) = w_{1}CT_{I}(E)$ $CT_{2}(E) = (1 - w_{2})CT_{W}(E) + w_{2}CT_{I}(E) = w_{2}CT_{I}(E)$

Their relative contrast is independent of the mixing ratio

 $RelCM = \frac{CT_{1}(E_{\rm L}) - CT_{2}(E_{\rm L})}{CT_{1}(E_{\rm H}) - CT_{2}(E_{\rm H})} = \frac{CT_{\rm I}(E_{\rm L}) - CT_{\rm W}(E_{\rm L})}{CT_{\rm I}(E_{\rm H}) - CT_{\rm W}(E_{\rm H})}$

Hence, it can be used to calibrate DECT.

Automatic Calibration

ReICM

- Automatic evaluation of two ROIs that contain water-iodine mixtures at two energies
 - ROI in aorta
 - ROI in liver

$$RelCM = \frac{CT_1(E_{\rm L}) - CT_2(E_{\rm L})}{CT_1(E_{\rm H}) - CT_2(E_{\rm H})} = \frac{\Delta CT_{\rm I}(E_{\rm L})}{\Delta CT_{\rm I}(E_{\rm H})}$$

RelCa

- Automatic evaluation of two ROIs, one contains Ca-fat mixture and one contains fat, at two energies
 - ROI in bone
 - ROI in fat $RelCa = \frac{CT_1(E_L) CT_2(E_L)}{CT_1(E_H) CT_2(E_H)} = \frac{\Delta CT_B(E_L)}{\Delta CT_B(E_H)}$

Position of reference points in DE diagram

• Evaluation of ROIs in muscle, fat, aorta, liver, bone etc.

Manual vs. Automatic Calibration Iodine Quantification Accuracy

patient 008		Manual calibration			Automatic calibration		
						0	
		ground truth					
		Ground truth	Automati calibratio	C n	absolute error		relative error
lung		2.50 mg/mL	2.56 mg/ml	L	0.06 mg/mL		2.4%
heart		11.29 mg/mL	11.31 mg/ml	L	0.02 mg/mL		0.2%
kidney		7.26 mg/mL	7.27 mg/ml	L	0.01 mg/mL		0.01%
spleen		2.94 mg/mL	2.94 mg/ml		0.00 mg/mL		0.00%
					mean relative error:		0.6%

Manual vs. Automatic Calibration Iodine Quantification Accuracy

patient (Manual o	calibration	Automatic calibration	ו
		nd truth		
	Ground truth	Automatic calibratior	absolute error	relative error
lung	1.50 mg/mL	1.62 mg/ml	0.12 mg/mL	8.0 %
heart	12.39 mg/mL	13.16 mg/ml	0.77 mg/mL	6.2 %
kidney	5.96 mg/mL	6.41 mg/ml	0.45 mg/mL	7.6 %
spleen	4.57 mg/mL	4.91 mg/ml	0.34 mg/mL	7.4 %
			mean relative error:	7.3 %
				مال <i>د</i> ه.

and and		
0 mg/mL	Lung PBV	6 mg/mL
0 mg/mL	<mark>Liver Iodine Overla</mark>	y 10 <mark>y _{mg/mL}</mark>
0 mg/mL	lodine overlay	10 mg/mL
-100 H	Bone Marrow	100 HU

Conclusions

- Automatic patient-specific calibration potentially provides a high iodine quantification accuracy
 - Results comparable to those obtained by a user who calibrated, selected and applied the applications to various organs
- Simultaneous evaluation and combination of varying DE applications
 - Potentially, no further user-interaction is needed
- Important step towards the presentation of evermore increasingly complex information in spectral CT
- However, the automatic segmentation is still an issue.

Thank You!

This presentation will soon be available at www.dkfz.de/ct. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/20, LE 2763/2 and MA 4898/5. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.