Organ-Specific Context-Sensitive Single and Dual Energy CT (DECT) Image Reconstruction, Display and Analysis

Sabrina Dorn¹, Shuqing Chen², Francesco Pisana¹, Joscha Maier¹, Michael Knaup¹, Stefan Sawall¹, Andreas Maier², Michael Lell³, and Marc Kachelrieß¹

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Friedrich-Alexander University Erlangen-Nürnberg, Germany ³Hospital Nürnberg, Paracelsus Medical University

To combine mutually exclusive CT image properties into a single organ-specific image reconstruction, display and analysis using prior anatomical information.

smooth kernel reconstruction

sharp kernel reconstruction

To combine mutually exclusive CT image properties into a single organ-specific image reconstruction, display and analysis using prior anatomical information.

lung window

body window

0.5 mm slab

10 mm slab

To combine mutually exclusive CT image properties into a single organ-specific image reconstruction, display and analysis using prior anatomical information.

Rho/Z

Optimum Contrast

Calculi Characterization

Virtual Unenhanced

Bone Marrow

Lung Analysis

Hardplaque Display

Xenon

Monoenergetic Plus

Heart PBV

Lung Nodules

Syngo.CT DECT application examples. Virtual unenhanced contains liver VNC, lung analysis contains lung PBV. Courtesy of Siemens Healthineers, Forchheim, Germany

Prior anatomical knowledge: 3D fully convolutional network¹

- Segmentation of dual energy data
- Cascaded neural network architecture
 - 1. Detection of the region of interest (ROI)
 - 2. Final detection of organ boundaries

- Automatic segmentation: liver, kidneys, spleen, lung, bone, aorta.
- Thresholding remaining voxels into the following tissue types: muscles, fat, vasculature.
- Currently, manual corrections are necessary (until today).

[1] S. Chen, H. Roth, S. Dorn, M. May, A. Cavallaro, M. Lell, M. Kachelrieß, H. Oda, K. Mori, and A. Maier. Towards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network. CoRR, 2017

Segmentation delivers a binary mask for each organ.

- 1. Smoothing of the binary masks to cope with the boundaries of adjacent anatomical structures.
- 2. Use smoothed masks to allow for individual settings for each organ.
 - Context-sensitive (CS) resolution
 - CS display
 - CS dual energy evaluation

Context-sensitive (CS) = organ-dependent parameter adaptation

Context-Sensitive Resolution

standard low resolution image (smooth kernel)

standard high resolution image (sharp kernel)

resolution-mixed image (high resolution in lung and bone, low noise in soft tissue)

Context-Sensitive Resolution

standard low resolution image (smooth kernel)

standard high resolution image (sharp kernel)

resolution-mixed image (high resolution in lung and bone, low noise in soft tissue)

- increased spatial resolution in bone and lung
- ✓ decreased noise level in soft tissue

conventional windowing

bone window

body window

lung window

Context-Sensitive Dual Energy

simultaneous DE evaluation with commonly used applications

Calcium-oxalate-stone

Uric acid-stone

Context-Sensitive Dual Energy

dkfz.

Conclusion

- Method strongly depends on segmentation accuracy
 - still needs improvement
- Context-sensitive resolution-mixing
 - combines mutually exclusive image properties
 - » high spatial resolution in bone and lung
 - » low noise in soft tissue
- Context-sensitive display
 - able to present significantly more information to the reader simultaneously
- Organ-specific DE evaluation
 - potential to facilitate the diagnosis

Thank You!

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/20-1, LE 2763/2-1 and MA 4898/5-1.

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

