First Experience in man with an Ultra-High Resolution Whole-Body Photon-Counting CT for Oncologic Imaging

E. Wehrse<sup>1,2</sup>, L. Klein<sup>1,2</sup>, M. Kachelrieß<sup>1,2</sup>, H.-P. Schlemmer<sup>1,2</sup>, C. H. Ziener<sup>1,2</sup>, M. Wennmann<sup>2</sup>, S. Delorme<sup>1,2</sup>, M. Uhrig<sup>1,2</sup>, and S. Sawall<sup>1,2</sup>
<sup>1</sup>German Cancer Research Center (DKFZ), Heidelberg, Germany
<sup>2</sup>Ruprecht-Karls-University of Heidelberg, Germany



IELMHOLTZ-GEMEINSCHAFT

## **Materials and Methods**

- Heterogeneous group of nine patients with bone metastases due to
  - Breast cancer
  - Melanoma
  - Multiple myeloma
- Unenhanced examination with the SOMATOM CounT CT (Siemens Healthineers, Germany)





## Materials and Methods (2)

- Acquisitions were performed at 120 kV with 300 mAs
- Ultra-high resolution mode of the PC detector with a CTDI<sub>vol,32 cm</sub> of 24 mGy (243 mGy cm, D<sub>eff</sub>= 3.6 mSv).
- Image reconstruction was performed using routine (B40, B70) and additionally high-resolution (U70) kernels using 512 and 1024 matrix size



#### Results



PC CT images in bone window demonstrating the osseous fine structure in a 77years old patient with multiple myeloma (tumor marked by "1")



### Conclusion

- These preliminary results justify further studies investigating the possible advantages of PC over EI in oncological imaging.
- The influence of the higher tube currents and smaller pixel size used for PC focusing on z-positions with malignant lesions remains to be examined to isolate the impact of the detector technology.



# Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct<sup>®</sup> GmbH, Nürnberg, Germany.