Iron Quantification in Dual-Source Dual-Energy Photon-Counting CT With Up To 4 Energy Bins

S. Sawall^{1,2}, L. Klein^{1,2}, C. Amato^{1,2}, J. Maier¹, L. Rotkopf^{1,2}, S. Heinze³, C. H. Ziener^{1,2}, H.-P. Schlemmer^{1,2}, and M. Kachelrieß^{1,2}

> ¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany ³University Hospital Heidelberg, Heidelberg, Germany

To compare the performance of a dual-source dual-energy photon-counting CT system for iron imaging to a conventional dual-source energyintegrating CT.

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

dkfz.

Simulation: prefiltered spectra as seen after a 320 mm patient.

Source and Detector A

Source and Detector B

Simulation: prefiltered spectra as seen after a 320 mm patient.

Photon-Counting Detector 100 kV / Sn 140 kV, 4 Spectra

Simulation: prefiltered spectra as seen after a 320 mm patient.

dkf7

Materials and Methods

	El 2 Spectra	PC 2 Spectra/Bins	PC 4 Spectra/Bins
Detector Type	Energy Integrating	Photon Counting	Photon Counting
Number of detected spectra	2	2	4
Thresholds for 80 kV/100 kV	-	<i>T</i> ₁ = 20 keV	T ₁ = 20 keV T ₂ = 50 to 90 keV
Thresholds for Sn 140 kV	-	<i>T</i> ₁ = 20 keV	T ₁ = 20 keV T ₂ = 50 to 90 keV
Tube voltage	80 kV / Sn 140 kV or 100 kV / Sn 140 kV		
Tube current	398 mAs / 154 mAs or 193 mAs / 149 mAs		
CTDI	15 mGy		

Materials & Methods Scanner and Phantom with Iron Solutions

Top: C = 180 HU, W = 600 HU. Bottom: C = -50 HU, W = 400 HU

Materials & Methods Material Decomposition

- Material decomposition is performed in image domain using a previously published algorithm¹.
- If the number of measurements equals the number of desired material maps, the method inverts the corresponding system of equations.
- If there are more measurements than desired material maps, the method performs an statistically optimal weighting of all bins to minimize image noise.

Materials & Methods Figures of Merit

- Image quality of iron material maps can be quantified using the dose-normalized CNR (CNRD).
- We further normalize for iron concentration:

 $CNRDc = \frac{CNRD}{c}$

 For evaluation, we report the CNRDc improvement of photon-counting measurements over energyintegrating ones.

■ PC 2 Spectra/Bins ■ PC 4 Spectra/Bins

The results using 4 spectra were obtained using optimal threshold settings.

dk

The results using 4 spectra were obtained using optimal threshold settings.

Results 4 Spectra/Bins, 80 kV / Sn 140 kV

14

2

Summary & Conclusions

- Dual-source dual-energy PCCT provides a higher iron CNRDc for all investigated protocols compared to El.
- 4 spectra/bins allow for an additional improvement of CNRDc.
- However, the results do not show a dependence on the threshold $T_{\rm Sn140\ kV}$
- This is most likely caused by the fact that the iron kedge is at 7.1 keV.

Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.