Erkennbarkeit von Niedrigkontraststrukturen in der Photonenzählenden Ganzkörper Computertomographie – Eine Phantomstudie

Jennifer Hardt^{1,2}, Achim Byl^{1,2}, Laura Klein^{1,2}, Joscha Maier^{1,2}, Heinz-Peter Schlemmer¹, Eckhard Wehrse¹, Lukas Rotkopf¹, Christian Ziener¹, Sarah Heinze^{2,3}, Marc Kachelrieß^{1,2}, and Stefan Sawall^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany ³Institute of Forensic and Traffic Medicine, Heidelberg, Germany

Detector Technologies

Systematic illustration of the operation principles of the different detectors

SOMATOM CounT CT at the DKFZ

Gantry from a clinical dual source scanner

- Conventional CT (EI) detector (50 cm FOV)
- Photon-counting (PC) detector (27.5 cm FOV)

Pixel size at the isocenter for different readout modes

Contrast-to-Noise-Ratio (CNR)

 By selecting two ROIs, the CNR can be calculated using

$$\mathsf{CNR} = \frac{|\mu_{\mathsf{sig}} - \mu_{\mathsf{bg}}|}{\sqrt{\sigma_{\mathsf{sig}}^2 + \sigma_{\mathsf{bg}}^2}}$$

• Normalization to dose $CNRD = \frac{CNR}{\sqrt{Dose}}$

Regions of interest for CNR, M-phantom (PC); C = 40 HU, W = 300 HU

Model Observer

- Used to determine image quality
- Evaluated by the performance of an "observer" on a specific task
- Studies with human observers are very time consuming
 → use mathematical model observers
- Consider a binary detection problem i.e. "Is a lesion in the image present?"
- Calculation of a response or decision variable $\lambda(f)$
- A high value indicates a high confidence that the signal or lesion is present.

Model Observer – ROC Curve

Probability density function of the observer response, for signal present $p(\lambda|+)$ and signal absent $p(\lambda|-)$ images, and the corresponding ROC curve

Model Observer – AUC and d'

- AUC, d' are global figures of merit and do not depend on a specific decision threshold λ_T .
- Detectability d' broadly describes how well both distributions are separated:

Model Observer – AUC and d'

- AUC, d' are global figures of merit and do not depend on a specific decision threshold λ_T
- d' is related to AUC by:

$$\mathsf{AUC} = \frac{1}{2} \left(1 + \mathsf{erf}\left(\frac{d'}{2}\right) \right)$$

• With:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} dt \ e^{-t^{2}}$$

Model Observer Channelized Hotelling Observer (CHO)

- Consider a SKE / BKE binary task

 → determine if a lesion is present in a noisy image
- Channel filters are included to reduce dimensionality

$$\boldsymbol{v} = \boldsymbol{\mathcal{U}}^T \boldsymbol{f}$$

- With $\mathcal U$ channel matrix, v channelized images, f images and $\mathcal S$ the covariance matrix
- The decision variable for the CHO is given by:

$$\lambda(\boldsymbol{v}) = \left(\overline{\boldsymbol{v}^+} - \overline{\boldsymbol{v}^-}\right)^T \mathcal{S}^{-1} \boldsymbol{v}$$

Four square spatial-domain channels

Phantom Measurements

- Tube voltage: 120 kV, 140 kV
- Effective tube current: 80 mAs, 120 mAs, 180 mAs, 240 mAs
- Pitch: 0.5
- Reconstructed with FBP, B40f (smooth) and B70f (sharp)

Phantoms used in this study, C = 40 HU, W = 300 HU

CNRD Improvement of PC at 120 kV

Phantom Size	Relative CNRD Difference PC vs. El	
	B40f / %	B70f / %
S	1.8 ± 1.6	16.5 ± 1.9
Μ	0.4 ± 2.0	19 ± 3
L	4 ± 3	32 ± 7

CNRD, 120 kV, 240 mAs, -20 HU

CNRD Improvement of PC at 140 kV

Phantom Size	Relative CNRD Difference PC vs. El	
	B40f / %	B70f / %
S	6.4 ± 1.3	26.3 ± 1.7
Μ	-1.4 ± 1.9	20 ± 5
L	4.0 ± 2.5	25 ± 4

CNRD, 140 kV, 240 mAs, -20 HU

Results Detectability

Images of the -20 HU / 10 mm lesion C = 40 HU, W = 300 HU

M-phantom, 140 kV, 240 mAs

Conclusion

- The same detectability of low contrast lesions is achievable for the PC with less dose compared to the EI.
- Alternatively, the usage of sharper reconstruction kernels allows better detectability of small lesions, due to lower noise of the PC at higher spatial resolution.

Thank You !

This presentation is available at www.dkfz.de/ct. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

