Scan Protocol Design of k-Edge Imaging in a Whole-Body Photon-Counting CT

Stefan Sawall^{1,2}, Laura Klein^{1,2}, Sabrina Dorn³, Carlo Amato^{1,2}, Joscha Maier^{1,2}, Sebastian Faby³, Monika Uhrig^{1,2}, Heinz-Peter Schlemmer^{1,2}, and <u>Marc Kachelrieß^{1,2}</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University of Heidelberg, Germany ³Siemens Healthineers, Forchheim, Germany

SOMATOM CounT CT @ DKFZ

Gantry from a clinical dual source scanner

A: conventional CT detector (50 cm FOV) B: Photon counting detector (27.5 cm FOV)

Experimental CT, not commercially available.

Photon-Counting CT Counting Single Photons

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

To investigate and validate the spectral properties of high-Z elements and the quality of resulting material images in a photon-counting CT.

2 Bins – Ideal Case

k-Edge Imaging

Readout Modes of the Siemens CounT

Chess Mode

 0.9×1.1 mm focus

2x2 readouts

16 mm z-coverage

<mark>34</mark>

12

<mark>34</mark>

12

Macro Mode					
0.9×1.1 mm focus					
1x2 readouts					
16 mm z-coverage					

12	12	12	12	12	34	12
12	12	12	12	34	12	3 4
12	12	12	12	12	34	12
12	12	12	12	34	12	34

1.6 mm CdTe sensor. No FFS on detector B (photon counting detector). 4×4 subpixels of 225 µm size = 0.9 mm pixels (0.5 mm at isocenter). An additional 225 µm gap (e.g. for anti scatter grid) yields a pixel pitch of 1.125 mm.The whole detector consists of 128×1920 subpixels = 32×480 macro pixels. Sharp Mode 0.9 × 1.1 mm focus 5×1 readouts 12 mm z-coverage

UHR Mode 0.7 × 0.7 mm focus 4×2 readouts 8 mm z-coverage

12	12	12	12
12	12	12	12
12	12	12	12
12	12	12	12

This photon-counting whole-body CT prototype, installed at the Mayo Clinic, at the NIH and at the DKFZ is a DSCT system. However, it is restricted to run in single source mode. The second source is used for data completion and for comparisons with El detectors.

Measurements

- Semianthropomorphic thorax and liver phantoms
- Phantom sizes
 - Small (200 × 300 mm)
 Medium (250 × 350 mm)
 Large (300 × 400 mm)
- Voltages 80, 100, 120 and 140 kV
- Macro mode (2 bins) with threshold in 2 keV steps from 50 keV to 90 keV
- Further parameters
 - Tube current time product 200 mAs
 - Collimation 32×0.5 mm
 - Pitch 0.5
 - Rotation 0.5 s

U	CTDI _{vol32}
80 kV	4.4 mGy
100 kV	9.2 mGy
120 kV	15 mGy
140 kV	22 mGy

Phantoms and CNRDC

- Calculation of material-specific images by subtraction
- ROI 1 in contrast-enhanced region: Mean M_1 , variance V_1
- ROI 2 in non-enhanced region: Mean M_2 , variance V_2
- CNR = contrast-to-noise ratio

$$CNR = \frac{M_1 - M_2}{\sqrt{V_1 + V_2}}$$

- CNRD = CNR at unit dose = CNR/sqrt(CTDI_{vol32})
- CNRDC = CNRD at unit concentration = CNRD/concentration

Material-Selective vs. CNR Optimizing

- f_{LH} = low/high energy or bin image, background at 0 HU
- C_{LH} = contrast in low/high energy or bin image
- V_{LH} = variance in low/high energy or bin image
 - Material-selective image: $f_{\rm L} f_{\rm H}$ (e.g. iodine map)

$$CNR_{mat}^2 = \frac{(C_L - C_H)^2}{V_L + V_H}$$

• Optimum CNR image: $(1 - \alpha)f_{\rm L} + \alpha f_{\rm H}$

$$\alpha_{\rm opt} = \frac{C_{\rm H}V_{\rm L}}{C_{\rm H}V_{\rm L} + C_{\rm L}V_{\rm H}} \qquad \text{CNR}_{\rm opt}^2 = \frac{C_{\rm L}^2}{V_{\rm L}} + \frac{C_{\rm H}^2}{V_{\rm H}} \left\{ \begin{array}{c} \text{nearly} \\ \text{independent} \\ \text{of threshold} \end{array} \right\}$$

• Optimum is optimal (needless to say): $CNR_{opt}^{2} = CNR_{mat}^{2} + \frac{(C_{L}V_{H} + C_{H}V_{L})^{2}}{V_{L}V_{H}(V_{L} + V_{H})}$

Material Image CNRD Ytterbium

Material Image CNRD

Material Images

C = 15 mg Yb/mL, W = 50 mg Yb/mL

Summary & Conclusion

- Clinical k-edge imaging seems reasonable with photon counting CT.
- Thresholds can be set to maximize CNR_{mat} since CNR_{opt} is nearly constant.
- Optimal thresholds increase with
 - higher tube voltage (otherwise too many counts in high bin)
 - and with larger phantom diameters (needs counts in low bin).
- Contrast agents with high-Z materials might
 - help to reduce the required amount of contrast agent
 - or might be combined with iodine.

Limitations

- Only one threshold was used.
- Threshold was optimized only for a single contrast agent.
- Noise reduction techniques were not applied.
- High-Z agents do not exist for use in human subjects.

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.