Strategien zur Dosisoptimierung in der Photonenzählenden Ganzkörper-Computertomographie

Laura Klein^{1,2}, Eckhard Wehrse¹, Lukas Rotkopf¹, Carlo Amato^{1,2}, Joscha Maier¹, Heinz-Peter Schlemmer¹, Christian H. Ziener¹, Sarah Heinze^{2,3}, Marc Kachelrieß^{1,2}, and Stefan Sawall^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Germany ³Institute of Forensic and Traffic Medicine, Heidelberg, Germany

dkfz.

Photon-Counting CT Spectral/Energy Information

140 kV spectrum as seen after having passed a 32 cm water layer.

Photon-Counting CT Spectral/Energy Information

140 kV spectra as seen after having passed a 32 cm water layer.

Energy Integrating (Detected Spectra at 100 kV and 140 kV)

 $\text{Signal}_{\text{EI}} = \int dE \, E \, N(E)$

140 keV

attenuation coefficient calcium attenuation coefficient iodine attenuation coefficient water

33 keV

0 keV

100 keV

Photon Counting (Detected Spectra at 100 kV and 140 kV)

attenuation coefficient calcium attenuation coefficient iodine attenuation coefficient water

Spectra as seen after having passed a 32 cm water layer.

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

Aim

To make use of the advantages of PC detectors, especially for examinations including contrast media:

- Higher iodine contrast
- Energy bin weighting (improved iodine CNR)
- Smaller pixels, therefore lower noise at conventional resolution

CounT CT System at the DKFZ

Gantry from a clinical dual source scanner

A: conventional CT detector (50.0 cm FOV)
B: Photon counting detector (27.5 cm FOV)

Prototype, not commercially available.

Readout Modes of the CounT

El detector 0.60 mm pixel size

PC-Macro Mode 0.50 mm pixel size **PC-UHR Mode** 0.25 mm pixel size

Materials and Methods

- Abdomen phantoms of three different sizes (S, M, L) with iodine inserts of different concentrations
 - Small: 20 cm × 30 cm
 - Medium: 25 cm × 35 cm
 - Large: 30 cm × 40 cm
- Post-mortem angiography

- Tube voltages: 80 kV, 100 kV, 120 kV, and 140 kV
- Effective tube current of 200 mAs
- Collimation:
 - UHR: Acq. 64 × 0.25 mm
 - Macro: Acq. 32 × 0.50 mm
 - EID: Acq. 32 × 0.60 mm
- Reconstruction with D40f kernel

Materials & Methods CNRD Computations

 The contrast-to-noise ratio (CNR) could be used as a figure of merit:

 To account for different tube voltages and different dose levels we rather use the dose-normalized CNR (CNRD):

$$CNRD = \frac{Contrast}{Noise \cdot \sqrt{Dose}} = \frac{CNR}{\sqrt{Dose}}$$

• The potential x-ray dose reduction can be calculated by Dose Reduction = $1 - \frac{CNRD_{Ref}^2}{CNRD_{PC}^2}$

Materials & Methods CNRD Optimization – Bin Combination

- To optimize CNR in case of two bins, we use an inverse variance weighting.
- In particular, weights for bin b are given as

with C_b being the contrast in the respective bin image and V_b being the variance in the ROIs used to compute C_b .

The resulting CNR is

$$CNR^2 = \frac{\left(\sum_b w_b C_b\right)^2}{\sum_b w_b^2 V_b}$$

Materials & Methods

Investigation of different protocols:

- EI: standard EI acquisition
- Macro-PC1: PC detector, similar pixel size as El
- Macro-PC2: PC detector, similar pixel size as EI, energy bin weighting
- UHR-PC1: PC detector, small pixels
- UHR-PC2: PC detector, small pixels, energy bin weighting

Results at 80 kV

Error bars indicate the errors when analyzing 15 different slices of the same contrast.

Results at 80 kV

Error bars indicate the errors when analyzing 15 different slices of the same contrast.

Results at 140 kV

Error bars indicate the errors when analyzing 15 different slices of the same contrast.

Head Scan

El 140 kV / 200 mAs 22.16 mGy CNRD = 4.31 UHR-PC2 140 kV / 200 mAs 24.17 mGy CNRD = 6.46 CNRD Improvement of 50 %

UHR-PC2 140 kV / 100 mAs 12.08 mGy CNRD = 4.78

± 15 HU

± 14 HU

C = 200 HU, W = 400 HU

± 12 HU

Head Scan

El 140 kV / 200 mAs 22.16 mGy CNRD = 4.31 UHR-PC2 140 kV / 200 mAs 24.17 mGy CNRD = 6.46

UHR-PC2 140 kV / 100 mAs 12.08 mGy CNRD = 4.78 45% lower dose

± 15 HU

± 14 HU

C = 200 HU, W = 400 HU

± 12 HU

Conclusions

- PC CT offers many advantages over El CT to improve scan protocols for various medical indications.
- For applications with contrast media, advantages include higher iodine contrast, bin weighting due to the intrinsic acquisition of spectral data, and noise reduction at conventional resolution due to small pixels.
- Depending on the scan parameters, a dose reduction up to 50 % can be expected with the implementation of PC CT scanners in clinical practice.

Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.