Deep Learning-Based Scatter Correction for Dual Source Dual Energy CT

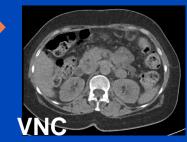
Julien Erath^{1,2,3}, Tim Vöth^{1,3}, Joscha Maier¹, Eric Fournié², Martin Petersilka², Karl Stierstorfer², and Marc Kachelrieß^{1,3}

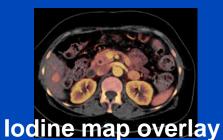
¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Siemens Healthineers, Forchheim, Germany ³Ruprecht-Karls-Universität, Heidelberg, Germany

www.dkfz.de/ct

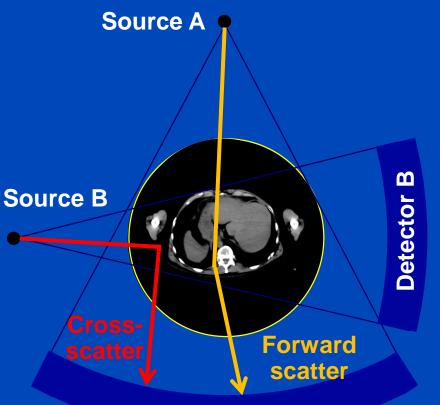
Dual Energy in Dual Source CT (DSCT)

- Dual Source CT (DSCT) uses two measurement systems A and B
- Dual Energy CT (low and high energy image) :
 - Different attenuation (HU) of materials at different energies enable material decomposition and characterization to create different image sets like Virtual Non Contrast (VNC), lodine Maps or monoenergetic images with additional diagnostic information.

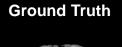

Acquisition of low and high energy image ...



Mixed energy image

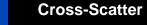


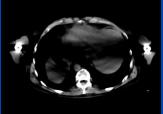
... which can be reconstructed in different ways



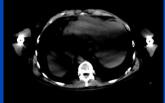
Scatter in DSCT

- Scatter in dual source CT: forward and cross-scatter
- Leads to visible cupping artifacts and dark streaks
- Scatter can not only produce visible artifacts, but can also lead to shift of measured CT values
- Scatter correction is necessary to maintain the accuracy of CT-measurement



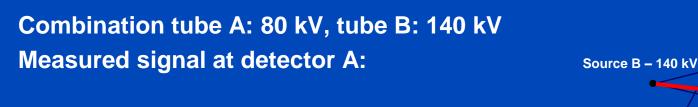


SIEN


Healthineer

Forward + Cross-Scatter

C = 40 HU, W = 300 HU, with anti-scatter grid


Deep Scatter Estimation (DSE) for Dual Source CT

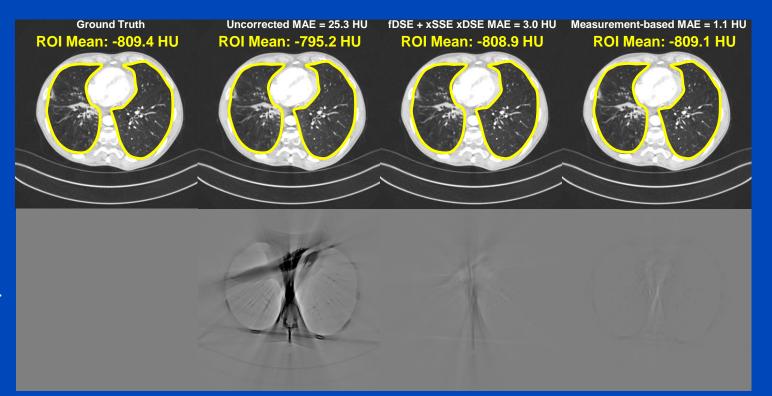
- Neural networks are trained to learn Monte Carlo scatter intensities
- Two separate deep convolutional neural networks (CNN) to correct forward and cross-scatter
- Forward scatter: Deep CNN to predict scatter using a function of the aquired projection data (fDSE^{1,2})
- Cross-scatter: Deep CNN with an additional cross-scatter approximation (xDSE xSSE²) to maintain high robustness of scatter estimation
- For the cross-scatter approximation an initial non-scatter corrected reconstruction is computed and the interactions of X-rays with matter are simulated through volume raytracing²
- Neural networks are trained for the combination A: 80 kV, B: 140 kV

Scatter in Dual Energy Mode

Source A – 80 kV

Detector B

scatter


- Detector A will receive primary and forward of tube A and also cross-scatter of tube B → high scatter-to-primary ratio
- ρ ratio between the tube current of the cross tube and the tube current of the forward tube, ρ is known when performing a measurement
- Scatter correction crucial in dual energy mode

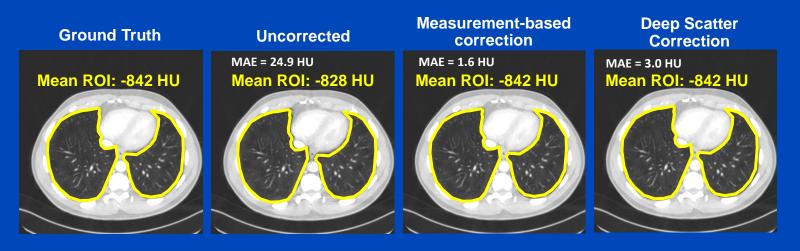
•

ullet

- Absolute CT values are of great importance in Quantitative CT
- For example: measuring air trapping and the extent of emphysema-like lung parenchyma
- Variability in intrathoracic air values between different CT scanners makes comparison challenging
- Mean CT value of the lung without scatter correction, with measurement-based correction and DSE correction is compared SIEMENS Healthingers

Example of Scatter Correction in Dual Energy CT

Difference to GT



Reconstruction: C = -500 HU, W = 1500 HU, Difference to GT: C = 0 HU, W = 300 HU

Discussion

- Scatter correction is crucial in dual energy for DSCT
- DSE is able to remove the scatter artifacts and improves the accuracy of the CT values
- DSE improves the accuracy of CT numbers for quantitive CT imaging
- The accuracy of the corrected CT values is similar to a measurement-based correction technique but does not need additional detector sensors

Thank You!

Questions? julien.erath@dkfz.de

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

