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Fully Connected Neural Network

« Each layer fully connects to previous layer
 Difficult to train (many parameters in W and b)
« Spatial relations not necessarily preserved

Input Hidden Hidden Hidden Qutput

e.g. 512x512x3 pixels e.g. 1 label
e.g. TS e.g. Copenhagen
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Output:
y' (v’ (v (y' ()

y(x) = f(W-z+b) with f(x) = (f(21), f(22),...) point-wise scalar, e.g. f(z) = V0 = ReLU



Activation Functions

Function e[V [e]g Plot Function Equation Plot
_ 0 forz<O
Identity  f(z) == / RelU flz) = {m for z > 0 /
_ . - 1 Leaky _Jox forx <0
Sigmoid  f(z) = = / RelLl f(z) {:1: for 2 > 0 /
Hard 0 forz<-a a(e® —1) forz <0
. . flx)=¢%2 for —a<z<a ELU flz) =
sigmoid A, T for >0
Inverse z f 0
9 _ ) e or r <
Tanh f@) =5 — = 1 I Ecdjuare root f(z) = {m T > 0 /

. X
Softsign  f(x) = = I

Softplus  f(x) = log(1 + exp x) /




Gradient Descent

Walk along the direction of the negative gradient
Steepest descent
Learning rate n

weV — ,wold o anw L(CBn, yn’,w)

Easy to understand, but not optimal

Methods in use
— Batch gradient descent
— Sochastic gradient descent
— Mini-batch gradient descent
— Conjugate gradient descent
— Quasi Newton methods
— Momentum methods



Convolutional Neural Network (CNN)

* Replace dense Win y(x) = f(W -x + b) by a sparse
matrix W with sparsity being of convolutional type.

« CNNs consist (mainly) of convolutional layers.
« Convolutional layers are not fully connected.

« Convolutional layers are connected by small, say
3x3, convolution kernels whose entries need to be

found by training.
« CNNs preserve spatial relations to some extent.

Src Dst
512x512xF 512x512xG

m 6,J,9 ZS,Jf*K,gf—ZSz a,j— beabf

a,b, f

Attention: No convolution in depth direction!



U-Netl

Output:

|nput: 384 x 256 x 4
‘ Concatenative skip connection

192 x 128 x 40

96 x 64 x 80
48 x 32 x 160
24 x 16 x 320
12 x 8 x 480 O- 3 x 3 Convolution, RelLU
o ®» 1x1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

10. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for dkfz
®

biomedical image segmentation. Proc. MICCAI:234-241, 2015.



What Is an Autoencoder?

In and output domain are the same, here X.

Bottleneck z enforces the encoder and decoder to do a
good job.

= D(E(z))

Examples:
— Principal component analysis (linear autoencoder), lossless
— PCA with dimensionality reduction (nonlinear due to clipping), lossy
— Image compression and decoding, e.g. jpeg, lossy

Latent space typically not interpretable.




What Is a Variational Autoencoder?

Make latent space regular.

Allow to sample in latent space from a given
distribution, here: normal distribution.

(uvo-) Z N(M,O')
| )

The VAE is a generative model.

It allows to generate new data by sampling new values
from the normal distribution.




Loss Function

 The neural network parameters (weights and biases)
w are chosen by minimizing a loss function (cost

function) N

w = arg min Z L(x,,y,,w)

n=1

with X, being the training data input, y(x,,, w) being
the network output, and y, being the so-called labels,
l.e. the training target, and N being the number of
training samples.

« An example for such aloss function is the MSE loss

L(wnaynaw) — (y(wnaw) B yn))2



Generative Adversarial Network?
(GAN)

« Useful, if no direct ground truth (GT) is available, the
training data are unpaired, unsupervised learning

- generate % detect

Counterfeiter fake currency fake currency Police
Generator G Discriminator D

true =1, fake=0
sigmoid in-between

provide
true data

Treasury
Data pool

1]. Goodfellow et al. Generative Adversarial Nets, arXiv 2014




Generative Adversarial Network
(GAN)

* Typical loss function and minimax game:

m(%n max L(D,G):=E;In (1 — D(G(ﬂf))) + E, In D(y)

« Conditional GAN!?

— Conditinal GANs sample the generator input x not from a uniform
distribution but from a conditional distribution, e.g. noisy CT images.

— Need some measure to ensure similarity to input distribution (e.g.
pixelwise loss added to the minimax loss function)

* Cycle GAN? D, D,
— Two GANs (X > Y and Y - X) 1 l

— Demand cyclic consistency, I.e. Gy
X = Gx(Gy(x)) and y = Gy(Gx(x)) x |7/ 1| v

GX

llsola et al. 2017 dkf
2Zhu et al., 2017 ZO




Metal Stre
Deep Lea

Gjesteby, 2019

Metal artifact reduction on cervical CT
images by deep residual learning

Metal-Artifact Reduction Using Dy
d Sinogram Completion: Ini

Deep Learning based Metal Inpainting in the
Projection Domain using additional Neighboring

Giestahy 2017

Takes 32x32 ing
produces 2052
Very basic CNN

Zhang, 2018

NS | BT | a

-
B7NS | | BN

2~
SN0 | @9 | GFES

Claus, 2017

Trained and evaluated on simulated data with metal
circlein the center (no other positions tested)

Data are heavily simplified (random ellipses)!
Inputs are 2 81x21 sized patches from the sinogram
next to metal patch. Won't work for complex metals
Relatively small network (4 layers)

Gottschalk, 2020

Projection Information

[SYSESESESXS

- € \.&"

Deep Neural Network for CT Metal Artifact

Redustion i Pessepisiateboss: Euictios

G, gt . g Y Yo .t o
R

Gjesieby, 2019

Same network as in previous work
Detail image is the high-pass filtered original image
Detail image and NMAR image are both put as inputs
in 2 streams that converge later in the CNN

Network uses residual error and cost function is a
combination of MSE and perceptual loss

Zhang, 2018

Metal is placed in real CT images. Artifacts are
created by forward and back-projecting soft tissue,
bone, and metal

Network input is patch of artifactimage /and output
is the residual, i.e. R= /- GT

Loss function is MSE of the residual

Learning the residual is found to be better than
learning the artifact-free image (no images)

Gottschalk, 2020

U-Net corrects CBCT projections
Has metal mask and 10 neighbouring projections as
additional input channels

Liao, 2019

Firstreplaces metal trace in the projections (.. fixed
angle but varying § and z)
and

Then the j into
uses a second network to improve those
Both networks are GANs with a U-Net generator and
CNN discriminator

Uses a Mask Pyramid to ensure the metal mask is
seen by all stages of the U-Net

Data are regular CT scans with metal traces from
other patients imposed on them

Giestahy 2018

Giestehy 2018

R image and the

function is MSE or perceptual loss (from VGG

it e by e i 14 e k28 i s = e e L

o

SRt g (Yo o V] e ek e

A dual-stream deep convolutional network for reducing metal
streak artifacts in CT imaj

Convolutional Neural Ne!

work Based Yu, 2018

Metal Artifact Reduction in X-Ray

Cumputed Tomuq

Fast Enhanced CT

Gottschalk, 2019

+ Corrects C-Arm projection data

+ Data were obtained by placing metal on top of human
knee cadavers

* Loss function is MSE

+ Networks are based on U-Net with additional skip
connection from original image to output

§ DS hnbork can i Ve ic Inslicity Sopran: U
metal for the Mask-MAR:

+ Providing a metal mask slgnlﬂcantlylmwoves
results

+ Results are blurred slightly

Ghani, 2019

Data Domain Deep Learning

+ Metal trace is replaced via a CGAN

+ Uses transfer learning from training data to real data;
not described in depth

* Not applied to medical images

Xing, 2019

+ Perform initial LIMAR to obtain images with
interpolation artifacts

« Apply U-Net to pre-corrected images to reduce
artifacts

+ Network minimizes L2-norm loss outside of the metal
regions

Yu, 2018

+ Training data are generated from clinical data with
motal artifacts added afterwards through
rd- & back

+ Cost function is MSE

+ CNN gets patches from the artifact, BHC corrected,
and LI corrected image as Input, produces corrected
patche

+ Prior image is generated from CNN result by
segmenting water and setting it to the average value
of all water pixels and leaving bone intact

+ Metal trace in the uncorrected sinogram is replaced
with values from the prior image

+ Having different types of MAR as input improves
results

Ghani, 2019

Lin, 2019

+ Input are LI pre-corrected sinograms/images

+ Firstimproves the sinograms through a U-Net with
mask pyramid (so all parts of the U-Net see the mask)

+ Then applies FBP (Radon Inversion Layer) and uses
the result as input for a second U-Net, which
improves itin image domain

+ Unclear how/if the LI and CNN results are combined




MAR Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64
)
UL .

Convolution Convolution Convolution Convolution .
+ RelU +RelU +RelU +RelU Convolution

» followed by segmentation into tissue classes

« followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dkfz
@

Computed Tomography. TMI 37(6):1370-1381, June 2018.



(a) Reference Image (b) Original Image
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Metal artifacts are

beam
hardening

=2CT = RO | :f__‘ g
noise™~—_ = //

+ increased susceptibility to sampling artifacts and motion.



MAR without Machine Learning Is a
Good Alternative:
Frequency Split Normalized MARY2

Uncorrected FSLIMAR FSNMAR
| ‘:..:v.é‘ . -
”~
:‘. - ;'. 8 il —» - "‘;-\..'- x4 - N _—
e I S SV et - . I
Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).
Normalized MAR (NMAR) FSMAR: Scheme

N alized sinogram Interpol. & norm.

1E. Meyer, M. KachelrieB. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 20
2E. Meyer, M. Kachelrie3. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012. z.



Summary on Deep MAR

« Most common uses for networks:
— Improve image quality in image domain after MAR
— Use network for the sinogram inpainting
— Produce a prior image, e.g. for NMAR

 Additional observations:

— Training data are often produced by segmenting an artifact-free CT
iImage, adding metal and applying a polychromatic forward projection to
different types of tissue separately.

— As of today, it seems hard to outperform NMAR, or hard to give
convincing clinical examples.




Noise Removal Example

Input:
low-dose
Input (NxNxZ) CT Imag es
~ Conv2D 128, (9x9)
'-
Batch Normalization ) RSl oy
ReLU Activation ‘ Residual Block
Group Conv2D Residual Block|
8x16, (3x3)
Residual Block .
Batch Normalization ggll’]pn eCt | on
ReLU Activation| Residual Block
Residual BlocK _
[Batch Normalization / esf - Predlcted
RelLU Activation ’_/ / ReSldual B'OCk n O I S e
| 7 Residual Block
D :
r Residual Block
Noise
Dutput (RNl subtraction E‘
 Architecture based on state-of-the-art
networks for image classification (ResNet).
« 32 conv layers with skip connections O Ioss'\f/IuSnEction
= _ denoised >
* About 2 million tunable parameters in total CT images 3
« Inputis arbitrarily-size stack of images, Full-dose
with a fixed number of adjacent slices in reference

the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
@

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Canon‘s AICE

« Advanced intelligent Clear-1Q Engine (AICE)

 Trained to restore low-dose CT data to match the
properties of FIRST, the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain a
high fidelity training target

Training AiCE — Deep Learning

Anatomical
mmmmm

nnnnnnn

nnnnnn

nnnnnn

Multiple Variations

AICE Image

Information taken from https://global.medical.canon/products/computed-tomography/aice_dIr dkuQ



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Dy = 0.35 mSv

“—{ Courtesy of
— . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning thei,etﬁ(‘;”;;”dcs



GE’s True Fidelity

« Based on a deep CNN

 Trained to restore low-dose CT data to match the
properties of Veo, the model-based IR of GE.

 No information can be obtained in how the training is
conducted for the product implementation.

2.5D DEEP LEARNING FOR CT IMAGE RECONSTRUCTION USING A MULTI-GPU
IMPLEMENTATION

Amirkoushyar Ziabari*, Dong Hye Ye * T Somesh Srivastava®, Ken D. Sauer ©

Jean-Baptiste Thibault t Charles A. Bouman*

* Electrical and Computer Engineering at Purdue Uni ity
f Electrical and Computer Engineering at Marquett University
{ GE Healthcare
@ Electrical Engineering at University of Notre Dame

ABSTRACT streaking artifacts caused by sparse projection views in CT
et al. developed method

porating CNN denoisers into MBIR reconstruction
nced prior models using the Plug-and-Play framework

While Model Based Iterative Reconstruction (MBIR) of CT
scans has been shown to have better image quality than Fil-
tered Back Projection (FBP), its use has been limited by
high computational cost. More recently, deep convolutional
neural networks (CNN) have shown great promise in both de-
noising and reconstruction applications. In this research, we
ch we call Deep

which we call Deep Learn
imately achieving the improved quali
residual neural network. The DL-MBIR method is
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Courtesy of GE Healthcare
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Solomon et al. Noise and spatial resolution properties of a commercially available deep dkf
learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020 ZO




Philips’ Precise Image

 Noise-injected data serve as low dose examples
while their original reconstructions are the labels. A
CNN learns how to denoise the low dose images.

Routine-dose
target image

Routine-dose
scan data

FBP
reconstruction

Low-dose .

stimulation ‘
technigue
Low-dose

scan data

Pre-processing

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf

o Acquires data from routine-dose clinical scans.

Generates low-dose scan data from the
routine-dose data by a sophisticated low-dose
simulation technique that accurately models both
photon and electronic noise in low-dose scans.'

Reconstructs routine-dose scan data with
a traditional FBP technique.

Trains the CNN to reproduce the image

appearance of the routine-dose FBP images
with low-dose scan data.

dkfz.



iDose? 1.4 mSv Precise Image 0.7 mSv iDose* 5.1 mSv

iDose* 1.5 mSv Precise Image 0.75 mSv iDose? 5.4 mSv Precise Image 2.6 mSv

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



True and Fake DECT

Existing true DECT approaches (for more than one decade):

Existing fake DECT approaches (as of May 2022):

[1] J. Ma, Y. Liao, Y. Wang, S. Li, J. He, D. Zeng, Z. Bian, “Pseudo dual energy CT imaging using deep learning-based
framework: basic material estimation®, SPIE Medical Imaging 2018.

[2] W. Zhao, T. Lv, P. Gao, L. Shen, X. Dai, K. Cheng, M. Jia, Y. Chen, L. Xing, “A deep learning approach for dual-energy
CT imaging using a single-energy CT data”, Fully3D 2019.

[3] D. Lee, H. Kim, B. Choi, H. J. Kim, “Development of a deep neural network for generating synthetic dual-energy chest x-
ray images with single x-ray exposure”, PMB 64(11), 2019.

[4] L. Yao, S. Li, D. Li, M. Zhu, Q. Gao, S. Zhang, Z. Bian, J. Huang, D. Zeng, J. Ma, “Leveraging deep generative model for
direct energy-resolving CT imaging via existing energy-integrating CT images”, SPIE Medical Imaging 2020.

[5] D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, C. T. Badea, “Deep learning based spectral extrapolation for
dual-source, dual-energy x-ray CT”, Med. Phys. 47 (9): 4150-4163, 2020.

[6] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, “Generation of brain dual-energy CT from single-energy CT using deep
learning”, Journal of Digital Imaging 34(1):149-161, 2021.

[7] T. Lyu, W. Zhao, Y. Zhu, Z. Wu, Y. Zhang, Y. Chen, L. Luo, S. Li, L. Xing, “Estimating dual-energy CT imaging from
single-energy CT data with material decomposition convolutional neural network”, Medical Image Analysis 70:1-10, 2021.

[8] F. R. Schwartz, D. P. Clark, Y. Ding, J. C. Ramirez-Giraldo, C. T. Badea, D. Marin, “Evaluating renal lesions using deep-
learning based extension of dual-energy FoV in dual-source CT—A retrospective pilot study”, European Journal of
Radiology 139:109734, 2021.

[9] Y. Li, X. Tie, K. Li, J. W. Garrett, G.-H. Chen, “Deep-En-Chroma: mining the spectral fingerprints in single-kV CT
acquisitions using energy integration detectors”, SPIE Medical Imaging 2022.
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Deep Scatter Estimation

277

In real time?




Motivation

« X-ray scatter iIs a major cause of image quality
degradation in CT and CBCT.

 Appropriate scatter correction is crucial to maintain
the diagnostic value of the CT examination.

Primary intensity CT image

-
S.a ’
g .
- é} scatter

CT reconstruction

C=0HU, W=800HU




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numb~ 5 ries well
our

apIOrOX|rrm1~“:O 10 h data se".

c Zulllpl
ographt




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

‘ 10 seconds (=

. data set

Downsamplin e‘- -\-_omO

and applicatio. 50 Upsampling
of operator O to or_|g|nal
T(p) Size
48 x 32 x 160
24 x 16 x 320

O- 3 x 3 Convolution, RelLU

12 % 8 x 480 ®» 1x1 Convolution, ReLU
—0O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

Projection data

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Scatter in Dual Source CT (DSCT)

i 3 - \‘
Siemens SOMATOM Force
dual source cone-beam spiral CT

Iprimary + Sforward + p Scross
1o

qg=—1In

Ground Truth Forward Scatter Cross-Scatter Forward
+ Cross-Scatter

i\ /0 ; .- \ ! // .n“-\‘\ ‘ ,/‘. B N

e [ . 4 (
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C =40 HU, W = 300 HU, with 2D anti-scatter grid
J. Erath, T. V6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelriel3. Deep learning-based

3
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forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



MeaS urem ent_BaS ed finite size focal spot
Scatter Estimation

G eammm» pre patient collimation

scatter scatter
detector imaging detector rows detector

v 1 1l (| [ | ( | [ [ | [ | [ | . v

primary intensity profile

J. Erath, T. V6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelriel3. Deep learning-based
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.




Cross-DSE

Ground Truth Uncorrected XxDSE (2D, xSSE) Measurement-based
MAE =42.6 HU MAE =4.9 HU MAE =10.6 HU vl

xDSE (2D, xSSE) maps
primary + forward scatter + cross-scatter + cross-scatter approximation — cross-scatter

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU

J. Erath, T. V6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrie3. Deep learning-based dkfz
o

forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



Conclusions on DSE

 DSE needs about 3 ms per CT and 10 ms per CBCT
projection (as of 2020).

e DSE Is a fast and accurate alternative to MC simulations.

 DSE outperforms kernel-based approaches in terms of
accuracy and speed.

* Facts:
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE generalizes to all anatomical regions.
— DSE works for geometries and beam qualities differing from training.
— DSE may outperform MC even though DSE is trained with MC.

 DSE is not restricted to reproducing MC scatter
estimates.

« DSE can rather be trained with any other scatter
estimate, including those based on measurements.

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
@

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Scatter of Coarse ASG

FUIELR Scattered
: e hotons
Conventional ASG Coarse ASG P
Somatom Force Naeotom Alpha
920 x 96 detector pixels 1376 x 144 macro pixels

pixel size 0.52 x 0.56 mm at iso pixel size 0.3 x 0.352 mm at iso

A

ASG ‘_ [ -! Zgﬂr

1234

1234
Coarse ASGs lead to
changing scatter
intensity between
neighboring pixels.

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th dkfz
o

International Conference on Image Formation in X-Ray Com-puted Tomography in June 2022



Scatter Artifacts of Coarse ASG

Conventional ASG Coarse ASG

Coarse ASG can lead to scatter-induced moiré artifacts.

Reconstruction: C =40 HU, W = 300 HU
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Scatter distribution averaged over all detector rows dkfz.



Training and Validation Data

« Monte Carlo simulation with the geometry of the photon counting CT
scanner NAEOTOM Alpha (Siemens Healthineers)

« 12 patients for training and 4 for validation
« 14 z-positions with 36 projections each simulated for each patient
« 8064 paired scatter and primary data pairs

« Simulation of coarse ASG with macro pixel with detector dimension of
1376 x 144 pixels

« 6 different macro pixels locations

« Smooth only across same macro-pixel locations M(0,0) M(1,0)

147 posi

anvy

tlons Training and validation patients with high

ﬂ% 8 variety and different clinical situations,
>\ important to consider scatter-to-primary ratio | VARSI LLE 5,

Example of validation data set:

M(0,2) M(1,2)




DSE for coarse ASG

Detector dimension

1376x144 Each channel
Input mapping corresponds to a : :
ja Tecutior different pixel position Merging 6 different channels to
p=—In(-=- LANE ) between the lamallea of obtain total scatter correction term
Io Iy the ASG
‘ INERTE S EEl TG Different macro pixel locations tOUtIOUti 6 channels
(V) L B
(0,1) P " 1
(1,0) o1
i S |
! 4
0,2) : i

(1.2) B |

688x48%32 ‘.|‘| >|.|‘|
344%24x64
‘ ‘ 3x3 Convolution, Stride 2
Lizdzizs I .I I hl ‘ 3x3 Convolution, Stride 1
“ Unpooling + depth concat.
86x6%256
Iml Skip connection

43%x3x512

- | Reshape

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th dkfz
o

International Conference on Image Formation in X-Ray Com-puted Tomography in June 2022



Results in Reconstructed Images
Ground Truth

Uncorrected

'
™
M’P'ﬂzf i

4
Sl

Simulated Reconstruction C = 0 HU, W =400 HU
Differenceto GT C =0 HU, W =50 HU

dkfz.



Results in Reconstructed Images

Grognd Truth Uncorrected

I

Simulated Reconstruction C = 0 HU, W =400 HU,
Difference to GT C = 0 HU, W = 50 HU dkfz.



Conclusions

« Coarse anti-scatter grid can lead to moiré artifacts
due to scattered radiation.

« DSE reduces the mean absolute error (MAE) from
about 9 HU to under 1 HU.

 The moire pattern‘s amplitude can be reduced from
30 HU to less than 5 HU.




UDSE — Basis Principle

@ DSE =--mm-=mmememmse s oeeoesoesooesooesooeoocoooeoooooo -

Input: CT scan 128x96x180 .128x96>t180 Output: Scatter
[ =
(intensities /) distribution S

64x48x180 64x48x180
{3
32x24x180 32x24x180

1

1

1

1

1

1

1

1

1

L { =2 1
16x12x180 16x12x180 ‘ i
Bx6x180 gx6x180 !
| e— 1

1

1

1

1

1

1

1

1

1

1

Channels of the convolutional layer:
32 64 128 256 512 1024 512 256 128 64 32/1

. Pep transform ’ 3x3x1 Convolution (stride = 1), ReLU ’ 2x2x1 Max pooling . Concatenate 2x2x1 Upsampling

—— = === == — gy

Discriminator / critic network

Scatter correction 144x144%48
|l . =1-S 72x72x48
gorr 36x36x48
18x18x48
‘ 9x9x48
1x1x48
Log transform ." il = WGAN
LOSS

Peorr = _Iog(lcorr)

¥

CT reconstruction
fcorr = X-l pCOI‘T

Channels of the convolutional layer:
32 64 128 256 512/1

<+— Tensorflow layers —»

. 3x3x1 Convolution, Layer normalization, LeakyReLU

/ . 2x2x1 Max pooling 9x9x1 Convolution ’ Z-average




Datasets

 Training and testing data were generated using CT
simulations based on 65 clinical CT reconstructions.

 Based on the corresponding voxel volumes, CBCT
scans (120 kV, shifted detector, RFD = 1100 mm,
RF = 700 mm, 360 views 360°) were simulated at five
different z-positions within the abdomen region.

« Generation of one scatter corrupted dataset (30
patients) that was used as input to the generator
network, one scatter-free dataset (30 patients) that
was used to provide ideal reference for the critic
network, and a scatter-corrupted dataset (remaining
patients) for testing.



Training

* Training of conventional DSE as reference using the
following loss function:

B
DSEy(1,,) — S,
LDSE(Q) _ Z 9(5 )

n

* Training of uDSE using a WGAN setup:

B
Lcritic(gc) — Z CGC (GQQ (In)) — CQC (freal, n)a
B

Lgen(6g) = = ) Co.(Go,(11)),

n



Results

Scatter Estimates

Primary + scatter (input) Ground truth DSE scatter prediction uDSE scatter prediction

C=0.06, W=0.12 lC 0007‘ CS 0007‘ C= 0007‘

Fi.«*\

Error w.r.t.
ground truth




Results

CT Reconstructions

Ground truth No correction DSE correction uDSE correction
c
O I
— £ .- A ) /
g p 'y ;‘ ﬁ_\ /
o 7 2
3 < Y
|_
@)

C =200 HU, W= 700 HU C =200 HU, W= 700 HU C =200 HU, W =700 HU C =200 HU, W= 700 HU

Difference to ground truth




Conclusions on uDSE

 This study demonstrates the feasibility of learning CT scatter
estimation in absence of labeled data.

« uDSE is able to remove most of the present scatter artifacts and
yields similar CT value accuracy (mean error of 27.9~HU vs.
24.7~HU) as a state-of-the-art supervised scatter estimation
approach

* In general uDSE is not restricted to CBCT but can be trained
with any tomographic input and any scatter-free reference as
long as both distributions are sufficiently equal after scatter
correction.

 Thus, uDSE has the potential to extend the concept of neural
network-based scatter estimation and correction to scenarios
where labels are not available or cannot be generated with
sufficient accuracy.



Deep Dose Estimation

277

In real time?




Estimation of Dose Distributions

Useful to study dose reduction techniques
— Tube current modulation
— Prefiltration and shaped filtration
— Tube voltage settings

Useful to estimate patient dose
— Risk assessment requires segmentation of the organs (difficult)
— Often semiantropomorphic patient models take over

— The infamous k-factors that convert DLP into D are derived this
way, €.9. K¢pest = 0.014 mSv/mGy/cm

Could be useful for patient-specific CT scan protocol
optimization

e However: Dose estimation does not work in real time!

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT dkfz
®

using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!



MC Dose Simulation for a 360° Scan

Patient Dnen 0 hours ative Dose

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT dkfz
o

using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!



Deep Dose Estimation (DDE)

« Combine fast and accurate CT dose estimation using
a deep convolutional neural network

 Train the network to r~= ds nates
given the ~~ eCO“
4 t0 10 S ata set

2-channel .

CTimage | O A
per tom g MC-dosel
(7 A i.:.,x.l.28x24x32 - target:

Ne—— 7 i ) /////// 64 x 64 12 x 64 o \
1st order doség III[III //A///I(Illf;zxszxexus\\\\\\‘\\\‘\\

‘ ’ [ 1

, ' l l l l ' l | IM. Ba\er, M. Kac’helrieB.

R 7 ' II I I ' I | | 'b‘ii Phys. Med. Biol. 57, 2012.

—

16 x 16 x 3 x 256

3 x 3 x 3 Convolution (stride = 1), ReLU ' 3 x 3 x 3 Convolution (stride = 2), ReLU 1 x1 x 1 Convolution (stride = 1), ReLU 2 x 2 x 2 Upsampling

O Depth concatenate

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT dkfz
®

using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!



Results

Thorax, tube A, 120 kV, no bowtie

CT image First order dose
o «.— ) MC DDE
4 ' \ 48
aQ slices 1h 0.25s
whole
& g g body 20 h 55

o MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600

GPU
'-l’ “ | i DDE training took 74 h for 300 epochs,
Yy - S | 1440 samples, 48 slices per sample
MC ground truth DDE Relative error

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!




Results

Pelvis, tube B, 120 kV, no bowtie

CT image First order dose
- MC DDE
aa 8 | 1h | o025s
ody | 20h | 5s

s MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600
GPU

. 1 DDE training took 74 h for 300 epochs,
1440 samples, 48 slices per sample

Relative error

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!



DDE‘s Organ Dose and D_; MAPEs

Bone marrow 0.12
Bone surface 0.01
Brain 0.01

Breast 0.12

Colon 0.12
Esophagus 0.04
Gonads 0.08

Liver 0.04

Lung 0.12
Remainder 0.12
Salivary glands 0.01
Skin 0.01

Stomach 0.12
Thyroid gland 0.04
Urinary bladder 0.04

Effective dose

Weighting factors and mean absolute percentage error of the DDE organ dose dkf
values with respect to the ground truth Monte Carlo organ dose values. ZO



Conclusions on DDE

 DDE provides accurate dose predictions

— for circle scans

— for sequence scans

— for partial scans (less than 360°)

— for limited angle scans (less than 180°)

— for spiral scans

— for different tube voltages

— for scans with and without bowtie filtration
— for scans with tube current modulation

* In practice it may therefore be not necessary to
perform separate training runs for these cases.

 Thus, accurate real-time patient dose estimation may
become feasible with DDE.

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time estimation of patient-specific dose distributions for medical CT dkfz
®

using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!



Patient Risk-Minimizing
Tube Current I\/Iodulatlon

1. Coarse reconstruction from two scout views

— E.g. X.Ying, et al. X2CT-GAN: Reconstructing CT from biplanar x- - .
rays with generative adversarial networks.
CVPR 2019. ,

2. Segmentation of radiation-sensitive organs
— E.g. S. Chen, M. Kachelriel3 et al., Automatic multi-organ
segmentation in dual-energy CT (DECT) with dedicated 3D fully
convolutional DECT networks. Med. Phys. 2019.
3. Calculation of the effective dose per view
using the deep dose estimation (DDE)

— J. Maier, E. Eulig, S. Dorn, S. Sawall and M. Kachelriel3. Real-time
patient-specific CT dose estimation using a deep convolutional neural
network. IEEE Medical Imaging Conference Record, M-03-178: 3 /
pages, Nov. 2018.

4. Determination of the tube current modulation
curve that minimizes the radiation risk

— L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A.
Maier, M. Lell, J. Maier, and M. Kachelrie3. Patient-specific radiation
’

risk-based tube current modulation for diagnostic CT. Med. Phys.
49(7):4391-4403, July 2022.

[

View angle

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. KachelrieR.

Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.



Patient 04 - Abdomen

MASTCM riskTCM
avg

52 HU, 100% mAs, 100% Deff 52 HU, 95% mAs, 89% Deff 52 HU, 97% mAs, 71% Déff
52 HU,;100% mAs, 100% Deff 49 HU, 107% mAs, 100% Deff 44 HU"137% mAs, 100% Deff
rls_kTCM riskTCM Re 0.12
mix opt BS 0.01
G Br 0.01

Xu, 100% mAs, 53%eff

38 HU™%82% mAs#00% Deff

C =25 HU, W = 400 HU

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. KachelrieR. dkfz
o

Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.



Conclusions on RiIskTCM

* Risk-specific TCM minimizes the patient risk.

* With D as arisk model riskTCM can reduce risk by
up to 30%, compared with the gold standard mAsTCM.

« Other risk models, in particular age-, weight- and sex-
specific models, can be used with riskTM - |l

on!
- Note: o the yendors 10 take acti
P o

— _—wu 10l the patient

a ECR 2022 - Best Research Presentation Abstract M,
within the topic Physics in Medical Imaging
with the presentation:

Risk-minimising tube current modulation (riskTCM)
for CT - potential dose reduction across different
tube voltages (16765)

L. Kleini, C. Liu2, J. Steidell, L. Enzmanni, S. Sawalll, J. Maierl,

A. Maier2, M. Lell3, M. KachelrieB1; 1Heidelberg/DE,
2Erlangen/DE, 3Nuremberg/DE

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. KachelrieR.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
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Motivation

Motion artifacts

High noise levels

» 4
. ', . o ¢ 4 ) Table 3: Reason for FFR_ Rejection in the ADVANCE
T AN 3 Registry and Clinical Cohort
-0 o :
\ | . : ' - ' ' FFR ., Rejected*
> ' ADVANCE Clinical Cohort
: Reason for Rejection Registry (2 = 80) (n=892)
Inadequate image quality’
. Blooming
. / Xy Clipped e==- - ___
‘- . K | - Motion artifacts
b Image noise

9 _ A . [nappropiiace oot =insinn

C=0HU, W=1200 HU Stent or previous coronary 5 (6.2) 116 (13.0)

artery bypass graft
present

Cardiac hardware present

The rejection rate was 892 of 10416 cases submirtted

* G. Pontone et al., “Determinants of Rejection Rate for Coronary CT Angiography Fractional dkf
Flow Reserve Analysis”, Radiology, 292(3), 597-605 (2019) y 49



Partial Angle-Based Motion
Compensation (PAMoCo)

Animated rotation time = 100 % real rotation time



Partial Angle-Based Motion
Compensation (PAMoCo)




Partial Angle-Based Motion
Compensation (PAMoCo)

Motion vector field s1(r)




Partial Angle-Based Motion
Compensation (PAMoCo)

Prior work;

[1] S. Kim et al., “Cardiac motion correction
based on partial angle reconstructed images
in X-ray CT”, Med. Phys. 42 (5): 2560-2571
(2015).

[2] J. Hahn et al., “Motion compensation in
the region of the coronary arteries based on
partial angle reconstructions from short-scan
CT data”, Med. Phys. 44 (11): 5795-5813
(2017).

[3] S. Kim et al., “Cardiac motion correction
for helical CT scan with an ordinary pitch”,
IEEE TMI 37 (7). 1587-1596 (2018).

- Limitation: Challenging / time-
consuming optimization




Deep Partial Angle-Based Motion
Compensation (Deep PAMoCo)

PARs centered Neural network to predict Reinsertion of patch into
around coronary parameters of a motion model Initial reconstruction
artery

>
i
A

\

' 3 x 3 x 3 Convolution, Batch norm, ReLU . 2 x 2 x 2 Max pooling :}‘7 Flatten .:‘ Dropout (25 %)

Spatial
transformer

Application of the motion model to
the PARs via a spatial transformer?!

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017-2025 (2015).



Training Data Generation

« Removal of coronary arteries from real CT
reconstructions.

 Insertion of artificial coronary arteries with different
shape, size, and contrast.

« Simulation of CT scans with coronary artery motion.

Motion simulation




Patient 1

Deep PAMo

_;{¢ e ,‘.v :‘
. ™

C =0HU, W=1400 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 2

Original

3 e

C=0HU, W=1600 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 3

C=0HU, W=1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 4 (lterative Recon)

Measurements at a Siemens Somatom AS, patient 1
Slice 1 Slice 2 Slice 3 Slice 4

T

ADMIRE FBP reconstruction

Deep PAMoCo

C =0 HU, W = 1200 HU dkfz.



Are the Methods Reliable?

« Studies about explainability of Alin CT image formation
are more than sparse.

* My thoughts:

— Cosmetic corrections: Unclear if noise reduction, metal artifact
reduction etc. is removing/adding lesions. The whole process is a
black box.

— Physical corrections: A clear physical meaning and rawdata fidelity
appear more reliable. Examples:

» MAR or detruncation networks where the NN output is used only to
forward project and inpaint/extrapolate the rawdata

» Scatter correction that estimates a smooth physically realistic
(trained with MC) scatter signal in intensity domain

» Motion correction networks that estimate motion vectors rather
than manipulating the voxel values



Explainable Al for CT: Analyzing CT
Image Denoising Networks by
Reconstructing their Invariances

* Elias Eulig, Bjorn Ommer, and Marc Kachelriel3
« RSNA 2022




Ground truth : Proposed

(a) 48 view

(b) 64 view

(c) 96 view

Seab Han, Jaejun Yoo _anrd



ROI1

ROI 2

ROI3

FBP(200 mAs)

FBP(10 mAs)

IRLNet(10 mAs, T-Net)

..‘

IRLNet(10 mAs, A-Net)
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Motivation

In general: L
- Deep learning methods are employed for many problems = =
iIn medical image formation, including image-based B
noise reduction.

« However, they lack interpretability due to black-box
nature of DNNs. Recent advancement in generative
modelling signal false confidence.

Aim of this work:

 Lay fundamentals for post-hoc interpretability and
robustness analysis of denoising DNNSs.

 Use two simple denoising networks f as initial examples: ‘s &
— Chen‘s simple 3-layer CNN trained with £, loss? =il
— Yang‘s Wasserstein GAN with additional perceptual loss?

 See what they have learned to represent and what to
ignore: For a given output x” there are many inputs x
that produce the same output x” = f(x).

« Employ low dose CT image and projection dataset for all =&
studies.3 '

1H. Chen et al., "Low-dose CT denoising with convolutional neural network”, ISBI 2017, 2017.
°Q. Yang et al., "Low-Dose CT Image Denoising Using a Generative Adversarial Network [...]”, in IEEE TMI, vol. 37, no. 6, 2018.
3C. McCollough et al., “Data from low dose CT image and projection data [data set],” The Cancer Imaging Archive, 2020.




Recap 1: What is an Autoencoder (AE)?

In and output domain are the same, here X.

Bottleneck z enforces the encoder and decoder to do a
good job.

|
-
—~
N
~—
|

[
S
js
<7

Examples:
— Principal component analysis (linear autoencoder), lossless
— PCA with dimensionality reduction (nonlinear due to clipping), lossy
— Image compression and decoding, e.g. jpeg, lossy

Latent space typically not interpretable.




Recap 2: What Is a Variational AE (VAE)?

 Make latent space regular.

« Allow to sample in latent space from a given
distribution, here: normal distribution.

(uvo-) z NN(Maa)
| )

 The VAE is a generative model.

It allows to generate new data by sampling new values
from the normal distribution.




Method

Recovering Invariances

Our work is based on Rombach et al.?

Given a function or network f(z) = ¥ (P(z))
we analyze its internal latent representations
z=®(x).

Train a VAE to learn a complete data

representation z = F(x) of low dose images.

Disentangle information captured in z and

invariances v by learning a mapping
v=1t(z|z), L(v) =N(0,1)

t(-|z) is realized by a conditional invertible
neural network (cINN).

<
Conv k9 f64
Conv k3 32
Conv k9 f64
Conv k3 32
Conv k9 f64
Conv k3 32

Conv k3 f1
=

Generate new images varying only by their
invariances

=Dt (v]z) v~ N(O,1) g

Alternative: Use VAE in high dose domain,
i.e. VAE,, to visualize the invariances.

1Robin Rombach, Patrick Esser, and Bjérn Ommer. "Making sense of CNNs: Interpreting

deep representations and their invariances with INNs”, ECCV 2020.



Method

Recovering Invariances

1. Our work is based on Rombach et al.l

i) v
- . . r = ~—N—
2. Train denoising methods Chen et al. & TR
Yang et al. r—r 2222 | — >
3. Train VAE to learn a complete data = ;’ -

representation of the low dose images x.

4. For each denoising method and layer in
the network we wish to evaluate, train a
cINN to recover the invariances.

5. For agiven test image, sample 250
invariances v, apply the inverse mapping
t - and apply the pretrained decoder D.

t— maps N(0,1) onto p(z|z).

Thus it produces only images that are likely under
the training distribution of the AE.

O—@+>9 B E
51 51 52 52 - %% & '> _Zy_ '> Y
-3 - ¢ B

Alternative: Use VAE in high dose domain,
Building block of INN: Invertible block, &, and &,, are CNNs or NNs i.e. VAE,, to visualize the invariances.

21 exp(&a(Za)) + 02(Z2) = Iy

1Rombach et al. "Making sense of CNNSs: Interpreting deep dkf
To exp({_fl (12)) + 61 (;1:1) = Io representations and their invariances with INNs”, ECCV 2020. z.



Results
enoising (Yangetal.) f=Wo




Results
Denoising (Yang etal.) f=Wo ®

Low dose

Prediction

High dose

Arrows point at selected differences between prediction and ground truth. dkfz.



Results

Sampling Invariances in Yang et al.’s Net

HHIRRAIE

T= (tl(v|z), v~ MO, 1)

Network layer

Same samples of v used for the rows corresponding to wiretapping after layers 1, 4 and 7.




il resuts P&

! Sampling Invariances in Target Domain in Chen et al.’s Net

y:D(t‘l(r\gj)), TNN(()? 1)

vy

forward project
add Poisson noise
reconstruct

Wiretapping after last layer. dku.




Conclusions & Outlook

Conclusions

 Designed a method to highlight invariances of a given network.
« Algorithm agnostic, not restricted to denosing .

» Architecture agnostic, not restricted to CT.

« Both denoising methods are invariant to some anatomical features to
some extent.

Outlook
 Improve interpretability by
— improving the embedding of the VAEs,

— mapping sampled invariance images to semantically
meaningful space (disentangled representations
of e.g. tumors).

* One could use the undesired invariances to finetune
the denoising methods.




Conclusions on Deep CT

I

« Machine learning plays and will play a significan;t":"‘f‘ﬁj
In CT image formation.
« High potential for
— Artifact correction

— Noise and dose reduction
— Real-time dose assessment (also for RT)

« Care has to be taken

— Underdetermined acquisition, e.g. sparse view or
limited angle CT, require the net to make up information!

— Nice looking images do not necessarily represent the ground truth.

— Data consistency layers and variational networks with rawdata
access may ensure that the information that is made up is
consistent with the measured data.
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Job opportunities through DKFZ’s international PhD or
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nirnberg, Germany.



