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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Activation Functions

Function Equation Plot

Identity

Sigmoid

Hard

sigmoid

Tanh

Softsign

Softplus

Function Equation Plot

ReLU

Leaky

ReLU

ELU

Inverse 

square root

LU

… … …
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Gradient Descent

• Walk along the direction of the negative gradient

• Steepest descent

• Learning rate 

• Easy to understand, but not optimal

• Methods in use
– Batch gradient descent

– Sochastic gradient descent

– Mini-batch gradient descent

– Conjugate gradient descent

– Quasi Newton methods

– Momentum methods

– …
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Convolutional Neural Network (CNN)
• Replace dense W in                                    by a sparse 

matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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What is an Autoencoder?

• In and output domain are the same, here x.

• Bottleneck z enforces the encoder and decoder to do a 
good job.

• Examples:
– Principal component analysis (linear autoencoder), lossless

– PCA with dimensionality reduction (nonlinear due to clipping), lossy

– Image compression and decoding, e.g. jpeg, lossy

• Latent space typically not interpretable.

E D
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• Make latent space regular.

• Allow to sample in latent space from a given 
distribution, here: normal distribution.

• The VAE is a generative model. 

• It allows to generate new data by sampling new values 
from the normal distribution.

What is a Variational Autoencoder?

E D
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Loss Function

• The neural network parameters (weights and biases) 
w are chosen by minimizing a loss function (cost 
function)

with xn being the training data input, y(xn, w) being 
the network output, and yn being the so-called labels, 
i.e. the training target, and N being the number of 
training samples.

• An example for such a loss function is the MSE loss
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Generative Adversarial Network1

(GAN)
• Useful, if no direct ground truth (GT) is available, the 

training data are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1I. Goodfellow et al. Generative Adversarial Nets, arXiv 2014
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Generative Adversarial Network 
(GAN)

• Typical loss function and minimax game:

• Conditional GAN1

– Conditinal GANs sample the generator input x not from a uniform 
distribution but  from a conditional distribution, e.g. noisy CT images.

– Need some measure to ensure similarity to input distribution (e.g. 
pixelwise loss added to the minimax loss function) 

• Cycle GAN2

– Two GANs (X  Y and Y  X)

– Demand cyclic consistency, i.e.
x = GX(GY(x)) and y = GY(GX(x))

1Isola et al. 2017
2Zhu et al., 2017

X Y

GY

GX

DYDX
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Deep MAR Examples
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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Metal artifacts are

beam 
hardening

+ scatter

+ directed 
noise

+ increased susceptibility to sampling artifacts and motion.
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MAR without Machine Learning is a 
Good Alternative:

Frequency Split Normalized MAR1,2

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

Uncorrected FSLIMAR FSNMAR

1E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.   
2E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.
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Summary on Deep MAR

• Most common uses for networks:
– Improve image quality in image domain after MAR

– Use network for the sinogram inpainting

– Produce a prior image, e.g. for NMAR

• Additional observations:
– Training data are often produced by segmenting an artifact-free CT  

image, adding metal and applying a polychromatic forward projection to 
different types of tissue separately.

– As of today, it seems hard to outperform NMAR, or hard to give 
convincing clinical examples.
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Noise Removal Example

• Architecture based on state-of-the-art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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• Advanced intelligent Clear-IQ Engine (AiCE)

• Trained to restore low-dose CT data to match the 
properties of FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a 
high fidelity training target

Canon‘s AiCE

Information taken from https://global.medical.canon/products/computed-tomography/aice_dlr



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGycm
Deff = 0.35 mSv
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GE‘s True Fidelity

• Based on a deep CNN

• Trained to restore low-dose CT data to match the 
properties of Veo, the model-based IR of GE.

• No information can be obtained in how the training is 
conducted for the product implementation. 



FBP ASIR V 50% True Fidelity

Courtesy of GE Healthcare
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Solomon et al. Noise and spatial resolution properties of a commercially available deep 
learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020
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Philips’ Precise Image

• Noise-injected data serve as low dose examples 
while their original reconstructions are the labels. A 
CNN learns how to denoise the low dose images.

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf
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True and Fake DECT
Existing true DECT approaches (for more than one decade):

Existing fake DECT approaches (as of May 2022):

[1] J. Ma, Y. Liao, Y. Wang, S. Li, J. He, D. Zeng, Z. Bian, “Pseudo dual energy CT imaging using deep learning-based 
framework: basic material estimation“, SPIE Medical Imaging 2018.

[2] W. Zhao, T. Lv, P. Gao, L. Shen, X. Dai, K. Cheng, M. Jia, Y. Chen, L. Xing, “A deep learning approach for dual-energy 
CT imaging using a single-energy CT data”, Fully3D 2019.

[3] D. Lee, H. Kim, B. Choi, H. J. Kim, “Development of a deep neural network for generating synthetic dual-energy chest x-
ray images with single x-ray exposure”, PMB 64(11), 2019.

[4] L. Yao, S. Li, D. Li, M. Zhu, Q. Gao, S. Zhang, Z. Bian, J. Huang, D. Zeng, J. Ma, “Leveraging deep generative model for 
direct energy-resolving CT imaging via existing energy-integrating CT images”, SPIE Medical Imaging 2020.

[5] D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, C. T. Badea, “Deep learning based spectral extrapolation for 
dual-source, dual-energy x-ray CT”, Med. Phys. 47 (9): 4150–4163, 2020.

[6] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, “Generation of brain dual-energy CT from single-energy CT using deep 
learning”, Journal of Digital Imaging 34(1):149–161, 2021.

[7] T. Lyu, W. Zhao, Y. Zhu, Z. Wu, Y. Zhang, Y. Chen, L. Luo, S. Li, L. Xing, “Estimating dual-energy CT imaging from 
single-energy CT data with material decomposition convolutional neural network”, Medical Image Analysis 70:1–10, 2021.

[8] F. R. Schwartz, D. P. Clark, Y. Ding, J. C. Ramirez-Giraldo, C. T. Badea, D. Marin, “Evaluating renal lesions using deep-
learning based extension of dual-energy FoV in dual-source CT—A retrospective pilot study”, European Journal of 
Radiology 139:109734, 2021.

[9] Y. Li, X. Tie, K. Li, J. W. Garrett, G.-H. Chen, “Deep-En-Chroma: mining the spectral fingerprints in single-kV CT
acquisitions using energy integration detectors”, SPIE Medical Imaging 2022.
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Real DECT
(ground truth)

70 kV

150 kV Sn

measured

measured

measured

calculated

Fake DECT
(often proposed)

measured

partially measured

calculated

final 150 kV Sn

measured

No physical 
information is 

available at 
150 kV.

Partial DECT
(small B FOM)
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Algorithm for Partial DECT
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Deep Scatter Estimation

???

In real time?
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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan

D
if

fe
re

n
c

e
 t

o
 s

li
t 

s
c

a
n

C
T

 R
e

c
o

n
s

tr
u

c
ti

o
n

C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.

Siemens SOMATOM Force 
dual source cone-beam spiral CT

Scatter in Dual Source CT (DSCT)

Ground Truth Forward Scatter Cross-Scatter Forward 
+ Cross-Scatter

C = 40 HU, W = 300 HU, with 2D anti-scatter grid
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z

primary intensity profile

imaging detector rows
scatter 
detector

row

scatter 
detector

row

finite size focal spot

pre patient collimation

Measurement-Based 
Scatter Estimation

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Cross-DSE

Uncorrected xDSE (2D, xSSE)

MAE = 10.6 HUMAE = 4.9 HUMAE = 42.6 HU

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU 

Ground Truth

xDSE (2D, xSSE) maps 
primary + forward scatter + cross-scatter + cross-scatter approximation    cross-scatter

Measurement-based

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Conclusions on DSE
• DSE needs about 3 ms per CT and 10 ms per CBCT 

projection (as of 2020).

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms kernel-based approaches in terms of 
accuracy and speed.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE generalizes to all anatomical regions.

– DSE works for geometries and beam qualities differing from training.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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1234

Coarse ASG
Naeotom Alpha

1376 × 144 macro pixels
pixel size 0.3 × 0.352 mm at iso

Scatter of Coarse ASG

z



Conventional ASG
Somatom Force

920 × 96 detector pixels
pixel size 0.52 × 0.56 mm at iso

1234

1234 1234

1234 1234

EI

EI
ASG

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th 
International Conference on Image Formation in X-Ray Com-puted Tomography in June 2022

Primary 
photon

Scattered 
photons

Coarse ASGs lead to 
changing scatter 
intensity between 

neighboring pixels. 
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Scatter Artifacts of Coarse ASG

Coarse ASG

Reconstruction: C = 40 HU, W = 300 HU

Coarse ASG can lead to scatter-induced moiré artifacts.

Conventional ASG
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3

Scatter distribution averaged over all detector rows 





70
Scatter distribution averaged over all detector rows 

3



right

left
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Training and Validation Data
• Monte Carlo simulation with the geometry of the photon counting CT 

scanner NAEOTOM Alpha (Siemens Healthineers)

• 12 patients for training and 4 for validation

• 14 z-positions with 36 projections each simulated for each patient

• 8064 paired scatter and primary data pairs

• Simulation of coarse ASG with macro pixel with detector dimension of 
1376 × 144 pixels

• 6 different macro pixels locations

• Smooth only across same macro-pixel locations

14 z positions
z1

z14

…

70 cm

Training and validation patients with high 
variety and different clinical situations, 
important to consider scatter-to-primary ratio

Example of validation data set:

M(0,0)

M(0,1)

M(1,0)

M(1,1)

M(0,2) M(1,2)
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688×48×32

344×24×64

172×12×128

86×6×256 

43×3×512

Detector dimension 
1376×144
Input mapping

Input: 6 channels

Merging 6 different channels to 
obtain total scatter correction term

Output: 6 channelsDifferent macro pixel locations

(0,0)

(0,1) 

(1,0)

(1,1)

(0,2)

(1,2)

Each channel 
corresponds to a 
different pixel position 
between the lamallea of 
the ASG

DSE for coarse ASG

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

Unpooling + depth concat.

Skip connection

Reshape

This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th 
International Conference on Image Formation in X-Ray Com-puted Tomography in June 2022
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Uncorrected

MAE = 8.4 HU

DSE

MAE = 0.9 HU

Ground Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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Uncorrected

MAE = 8.4 HU

DSE

MAE = 0.9 HU

Ground Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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Conclusions

• Coarse anti-scatter grid can lead to moiré artifacts 
due to scattered radiation.

• DSE reduces the mean absolute error (MAE) from 
about 9 HU to under 1 HU.

• The moiré pattern‘s amplitude can be reduced from 
30 HU to less than 5 HU.
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uDSE – Basis Principle

Input: CT scan 
(intensities I)

DSE
uDSE

Output: Scatter 
distribution S

Scatter correction
Icorr = I - S

Log transform
pcorr = -log(Icorr)

CT reconstruction
fcorr = X-1 pcorr

Te
n

so
rf

lo
w

la
ye

rs

Clinical CT images ("real”)

“Fake” images

Discriminator / critic network

WGAN
LOSS
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Datasets

• Training and testing data were generated using CT 
simulations based on 65 clinical CT reconstructions.

• Based on the corresponding voxel volumes, CBCT 
scans (120 kV, shifted detector, RFD = 1100 mm,     
RF = 700 mm, 360 views 360°) were simulated at five 
different z-positions within the abdomen region.

• Generation of one scatter corrupted dataset (30 
patients) that was used as input to the generator 
network, one scatter-free dataset (30 patients) that 
was used to provide ideal reference for the critic 
network, and a scatter-corrupted dataset (remaining 
patients) for testing.
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Training

• Training of conventional DSE as reference using the 
following loss function:

• Training of uDSE using a WGAN setup:
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Results 
Scatter Estimates

Primary + scatter (input) Ground truth DSE scatter prediction uDSE scatter prediction
Er

ro
r 

w
.r.

t.
 

gr
o

u
n

d
 t

ru
th

C = 0 %, W = 40 % C = 0 %, W = 40 % C = 0 %, W = 40 %

C = 0.007, W = 0.007 C = 0.007, W = 0.007 C = 0.007, W = 0.007C = 0.06, W = 0.12
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Results
CT Reconstructions

C
T

 r
e

c
o

n
s
tr

u
c

ti
o

n
D

if
fe

re
n

c
e

 t
o

 g
ro

u
n

d
 t

ru
th

Ground truth No correction DSE correction uDSE correction

C = 200 HU, W = 700 HU C = 200 HU, W = 700 HU C = 200 HU, W = 700 HUC = 200 HU, W = 700 HU

C = 0 HU, W = 500 HU C = 0 HU, W = 500 HU C = 0 HU, W = 500 HUC = 0 HU, W = 500 HU
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Conclusions on uDSE

• This study demonstrates the feasibility of learning CT scatter 
estimation in absence of labeled data.

• uDSE is able to remove most of the present scatter artifacts and 
yields similar CT value accuracy (mean error of 27.9~HU vs. 
24.7~HU) as a state-of-the-art supervised scatter estimation 
approach

• In general uDSE is not restricted to CBCT but can be trained 
with any tomographic input and any scatter-free reference as 
long as both distributions are sufficiently equal after scatter 
correction.

• Thus, uDSE has the potential to extend the concept of neural 
network-based scatter estimation and correction to scenarios 
where labels are not available or cannot be generated with 
sufficient accuracy. 
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Deep Dose Estimation

???

In real time?
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Estimation of Dose Distributions

• Useful to study dose reduction techniques
– Tube current modulation

– Prefiltration and shaped filtration

– Tube voltage settings

– …

• Useful to estimate patient dose
– Risk assessment requires segmentation of the organs (difficult)

– Often semiantropomorphic patient models take over

– The infamous k-factors that convert DLP into Deff are derived this 
way, e.g. kchest = 0.014 mSv/mGy/cm

– …

• Could be useful for patient-specific CT scan protocol 
optimization

• However: Dose estimation does not work in real time!

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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MC Dose Simulation for a 360° Scan

Dose per Projection Cumulative DosePatient

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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• Combine fast and accurate CT dose estimation using 
a deep convolutional neural network.

• Train the network to reproduce MC dose estimates 
given the CT image and a first-order dose estimate.

Deep Dose Estimation (DDE)

256 × 256 x 48 × 16

16 × 16 × 3 × 256

3 × 3 × 3 Convolution (stride = 1), ReLU 3 × 3 × 3 Convolution (stride = 2), ReLU 2 × 2 × 2 Upsampling1 × 1 × 1 Convolution (stride = 1), ReLU

Depth concatenate

128 × 128 x 24 × 32

64 × 64 x 12 × 64

32 × 32 x 6 × 128

2-channel input:

CT image

MC-dose1

target:

1st order dose

1M. Baer, M. Kachelrieß. 
Phys. Med. Biol. 57, 2012. 

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Results
Thorax, tube A, 120 kV, no bowtie

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC DDE

48

slices
1 h 0.25 s

whole 

body
20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Results
Pelvis, tube B, 120 kV, no bowtie

MC DDE

48

slices
1 h 0.25 s

whole 

body
20 h 5 s

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Organ and ICRP weight 80 kV 100 kV 120 kV

Bone marrow 0.12 5.2% 6.7% 7.1%

Bone surface 0.01 5.7% 7.0% 7.2%

Brain          0.01 5.1% 4.9% 5.3%

Breast 0.12 1.0% 1.4% 2.1%

Colon 0.12 0.9% 1.7% 1.9%

Esophagus 0.04 1.3% 2.4% 2.3%

Gonads 0.08 3.2% 2.7% 2.2%

Liver 0.04 2.9% 1.1% 0.8%

Lung 0.12 1.7% 3.5% 4.0%

Remainder 0.12 0.9% 1.9% 2.3%

Salivary glands 0.01 4.9% 5.1% 5.3%

Skin 0.01 2.8% 3.3% 4.2%

Stomach 0.12 2.3% 1.1% 0.8%

Thyroid gland 0.04 3.1% 3.0% 2.3%

Urinary bladder 0.04 1.7% 1.7% 1.3%

Effective dose 1.2% 2.5% 2.7%

Weighting factors and mean absolute percentage error of the DDE organ dose 
values with respect to the ground truth Monte Carlo organ dose values.

DDE‘s Organ Dose and Deff MAPEs
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Conclusions on DDE

• DDE provides accurate dose predictions 
– for circle scans

– for sequence scans

– for partial scans (less than 360°)

– for limited angle scans (less than 180°)

– for spiral scans

– for different tube voltages 

– for scans with and without bowtie filtration

– for scans with tube current modulation

• In practice it may therefore be not necessary to 
perform separate training runs for these cases.

• Thus, accurate real-time patient dose estimation may 
become feasible with DDE.

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Patient Risk-Minimizing
Tube Current Modulation

1. Coarse reconstruction from two scout views
– E.g. X. Ying, et al. X2CT-GAN: Reconstructing CT from biplanar x-

rays with generative adversarial networks.
CVPR 2019.

2. Segmentation of radiation-sensitive organs
– E.g. S. Chen, M. Kachelrieß et al., Automatic multi‐organ 

segmentation in dual‐energy CT (DECT) with dedicated 3D fully 
convolutional DECT networks. Med. Phys. 2019.

3. Calculation of the effective dose per view 
using the deep dose estimation (DDE)

– J. Maier, E. Eulig, S. Dorn, S. Sawall and M. Kachelrieß. Real-time 
patient-specific CT dose estimation using a deep convolutional neural 
network. IEEE Medical Imaging Conference Record, M-03-178: 3 
pages, Nov. 2018.

4. Determination of the tube current modulation 
curve that minimizes the radiation risk

– L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. 
Maier, M. Lell, J. Maier, and M. Kachelrieß. Patient-specific radiation 
risk-based tube current modulation for diagnostic CT. Med. Phys. 
49(7):4391-4403, July 2022.

View angle

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.



100

Patient 04 - Abdomen
no TCM

riskTCM
opt

mAsTCM riskTCM
avg

52 HU, 100% mAs, 100% Deff
52 HU, 100% mAs, 100% Deff

52 HU, 95% mAs, 89% Deff
49 HU, 107% mAs, 100% Deff

52 HU, 97% mAs, 71% Deff
44 HU, 137% mAs, 100% Deff

51 HU, 100% mAs, 53% Deff
38 HU, 187% mAs, 100% Deff

51 HU, 103% mAs, 43% Deff
34 HU, 238% mAs, 100% Deff

Re 0.12
BS 0.01
Br 0.01
Br 0.12
Co 0.12
RB 0.12
SG 0.01
Es 0.04
Li 0.04

Lu 0.12
Sk 0.01
St 0.12

Go 0.08
Th 0.04
Bl 0.04

riskTCM
mix

C = 25 HU, W = 400 HU

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.
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Conclusions on RiskTCM

• Risk-specific TCM minimizes the patient risk.

• With Deff as a risk model riskTCM can reduce risk by 
up to 30%, compared with the gold standard mAsTCM.

• Other risk models, in particular age-, weight- and sex-
specific models, can be used with riskTCM as well.

• Note:
– mAsTCM = good for the x-ray tube

– riskTCM = good for the patient

– detector flux equalizing TCM = good for the detector

1L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. Kachelrieß.
Patient-specific radiation risk-based tube current modulation for diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022.



102

Deep Cardiac Motion Compensation

???
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Motivation

Motion artifacts

High noise levels

*

* G. Pontone et al., “Determinants of Rejection Rate for Coronary CT Angiography Fractional 
Flow Reserve Analysis”, Radiology, 292(3), 597–605 (2019)

C = 0 HU, W = 1200 HU 
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Partial Angle-Based Motion 
Compensation (PAMoCo)

Animated rotation time = 100 × real rotation time
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Partial Angle-Based Motion 
Compensation (PAMoCo)
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Partial Angle-Based Motion 
Compensation (PAMoCo)

Apply motion vector fields (MVFs) to partial angle reconstructions

Motion vector field
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Partial Angle-Based Motion 
Compensation (PAMoCo)

Prior work:

[1] S. Kim et al., “Cardiac motion correction 
based on partial angle reconstructed images 
in x-ray CT”, Med. Phys. 42 (5): 2560–2571 
(2015).

[2] J. Hahn et al., “Motion compensation in 
the region of the coronary arteries based on 
partial angle reconstructions from short-scan 
CT data”, Med. Phys. 44 (11): 5795–5813 
(2017).

[3] S. Kim et al., “Cardiac motion correction 
for helical CT scan with an ordinary pitch”, 
IEEE TMI 37 (7): 1587–1596 (2018).

 Limitation: Challenging / time-
consuming optimization
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Spatial 
transformer

Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

PARs centered 
around coronary 
artery

Neural network to predict 
parameters of a motion model

Application of the motion model to 
the PARs via a spatial transformer1

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017–2025 (2015).

Reinsertion of patch into 
initial reconstruction
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Patch extraction

Training Data Generation

• Removal of coronary arteries from real CT 
reconstructions.

• Insertion of artificial coronary arteries with different 
shape, size, and contrast.

• Simulation of CT scans with coronary artery motion.

Forward 
projection

Motion simulation
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Patient 1

C = 0 HU, W = 1400 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 2

C = 0 HU, W = 1600 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 3

C = 0 HU, W = 1000 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 4 (Iterative Recon)
Measurements at a Siemens Somatom AS, patient 1

C = 0 HU, W = 1200 HU
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Are the Methods Reliable?
• Studies about explainability of AI in CT image formation 

are more than sparse.

• My thoughts:
– Cosmetic corrections:  Unclear if noise reduction, metal artifact 

reduction etc. is removing/adding lesions. The whole process is a 
black box.

– Physical corrections: A clear physical meaning and rawdata fidelity 
appear more reliable. Examples:

» MAR or detruncation networks where the NN output is used only to 
forward project and inpaint/extrapolate the rawdata

» Scatter correction that estimates a smooth physically realistic 
(trained with MC) scatter signal in intensity domain

» Motion correction networks that estimate motion vectors rather 
than manipulating the voxel values
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Explainable AI for CT: Analyzing CT 
Image Denoising Networks by 

Reconstructing their Invariances

• Elias Eulig, Björn Ommer, and Marc Kachelrieß

• RSNA 2022
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT via Persistent Homology Analysis. ArXiv 2016.



123Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Phys. Med. Biol. 63:215004, 2018.
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Motivation
In general:

• Deep learning methods are employed for many problems 
in medical image formation, including image-based 
noise reduction.

• However, they lack interpretability due to black-box 
nature of DNNs. Recent advancement in generative 
modelling signal false confidence.

Aim of this work: 

• Lay fundamentals for post-hoc interpretability and 
robustness analysis of denoising DNNs.

• Use two simple denoising networks f as initial examples:

– Chen‘s simple 3-layer CNN trained with ℒ𝟐 loss1

– Yang‘s Wasserstein GAN with additional perceptual loss2

• See what they have learned to represent and what to 
ignore: For a given output x´ there are many inputs x
that produce the same output x´ = f(x).

• Employ low dose CT image and projection dataset for all 
studies.3

Full dose

Quarter dose

CNN trained with MSE1

CNN trained as WGAN 
with VGG Loss2

1H. Chen et al., "Low-dose CT denoising with convolutional neural network”, ISBI 2017, 2017.
2Q. Yang et al., "Low-Dose CT Image Denoising Using a Generative Adversarial Network […]”, in IEEE TMI, vol. 37, no. 6, 2018.
3C. McCollough et al., “Data from low dose CT image and projection data [data set],” The Cancer Imaging Archive, 2020. 

Figure from reference [2]
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Recap 1: What is an Autoencoder (AE)?

• In and output domain are the same, here x.

• Bottleneck z enforces the encoder and decoder to do a 
good job.

• Examples:
– Principal component analysis (linear autoencoder), lossless

– PCA with dimensionality reduction (nonlinear due to clipping), lossy

– Image compression and decoding, e.g. jpeg, lossy

• Latent space typically not interpretable.

E D
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• Make latent space regular.

• Allow to sample in latent space from a given 
distribution, here: normal distribution.

• The VAE is a generative model. 

• It allows to generate new data by sampling new values 
from the normal distribution.

Recap 2: What is a Variational AE (VAE)?

E D
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Method
Recovering Invariances

• Our work is based on Rombach et al.1

• Given a function or network             
we analyze its internal latent representations

.

• Train a VAE to learn a complete data 
representation of low dose images.

• Disentangle information captured in    and 
invariances    by learning a mapping

• is realized by a conditional invertible 
neural network (cINN).

• Generate new images varying only by their 
invariances

1Robin Rombach, Patrick Esser, and Björn Ommer. "Making sense of CNNs: Interpreting 
deep representations and their invariances with INNs”, ECCV 2020.
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Alternative: Use VAE in high dose domain, 
i.e. VAEy, to visualize the invariances.
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Method
Recovering Invariances

1. Our work is based on Rombach et al.1

2. Train denoising methods Chen et al. & 
Yang et al.

3. Train VAE to learn a complete data 
representation of the low dose images x.

4. For each denoising method and layer in 
the network we wish to evaluate, train a 
cINN to recover the invariances.

5. For a given test image, sample 250 
invariances v, apply the inverse mapping       
t -1 and apply the pretrained decoder D.
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Alternative: Use VAE in high dose domain, 
i.e. VAEy, to visualize the invariances.Building block of INN: Invertible block, 12 and 12 are CNNs or NNs
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1Rombach et al. "Making sense of CNNs: Interpreting deep 
representations and their invariances with INNs”, ECCV 2020.

Thus it produces only images that are likely under 
the training distribution of the AE.
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Results
Denoising (Yang et al.) 𝒇 = 𝚿 ∘ 𝚽

H
ig

h
 d

o
s

e
P

re
d

ic
ti

o
n

L
o

w
 d

o
s

e



130

Results
Denoising (Yang et al.) 𝒇 = 𝚿 ∘ 𝚽
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Arrows point at selected differences between prediction and ground truth.
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Results
Sampling Invariances in Yang et al.’s Net 
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Same samples of v used for the rows corresponding to wiretapping after layers 1, 4 and 7.
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Results
Sampling Invariances in Target Domain in Chen et al.’s Net 
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reconstruct

Wiretapping after last layer.
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Conclusions & Outlook

Conclusions

• Designed a method to highlight invariances of a given network.

• Algorithm agnostic, not restricted to denosing .

• Architecture agnostic, not restricted to CT.

• Both denoising methods are invariant to some anatomical features to 
some extent.

Outlook

• Improve interpretability by 

– improving the embedding of the VAEs,

– mapping sampled invariance images to semantically
meaningful space (disentangled representations
of e.g. tumors).

• One could use the undesired invariances to finetune
the denoising methods.
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Conclusions on Deep CT

• Machine learning plays and will play a significant role
in CT image formation.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers and variational networks with rawdata 
access may ensure that the information that is made up is 
consistent with the measured data.

– …
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Thank You!

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


