Real-Time Patient-Specific CT Dose Estimation for Single- and Dual-Source CT using a Deep Convolutional Neural Network

Joscha Maier^{1,2}, Sabrina Dorn^{1,2}, Elias Eulig^{1,2}, Stefan Sawall^{1,2} and <u>Marc Kachelrieß^{1,2}</u> ¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-Universität, Heidelberg, Germany

Motivation

- The potential risk of ionizing radiation makes dose assessment an important issue in CT imaging.
- Limitation of common metrics (e.g. CTDI_w, CTDI_{vol}, DLP, k-factor, SSDE, ...) to provide information on organ or patient dose.

Same CTDI, but different dose distribution

Dose values in air voxels are set to zero (black) in this presentation.

Patient-Specific Dose Estimation

 Gold standard: Monte Carlo (MC) simulation of the CT acquisition^{1,2}.

→ Accurate but computationally expensive

¹G. Jarry et al., "A Monte Carlo-based method to estimate radiation dose from spiral CT", Phys. Med. Biol. 48, 2003. ²W. Chen et al., "Fast on-site Monte Carlo tool for dose calculations in CT applications", Med. Phys. 39, 2012.

Patient-Specific Dose Estimation

Accurate solutions:

- Monte Carlo (MC) simulation¹, gold standard, stochastic LBTE solver
- Analytic linear Boltzmann transport equation (LBTE) solver²

→ Accurate but computationally expensive

- Fast alternatives:
 - Application of patient-specific conversion factors to the DLP³.
 - Application of look-up tables using MC simulations of phantoms⁴.
 - Analytic approximation of CT dose deposition⁵.

→ Fast but less accurate

¹G. Jarry et al., "A Monte Carlo-based method to estimate radiation dose from spiral CT", Phys. Med. Biol. 48, 2003. ²A. Wang et al., "A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD)". Med. Phys. 46(2), 2019.

³B. Moore et al., "Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations", Med. Phys. 41, 2014.

⁴A. Ding et al., "VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients", Phys. Med. Biol. 60, 2015.

⁵B. De Man, "Dose reconstruction for real-time patient-specific dose estimation in CT", Med. Phys. 42, 2015.

Deep Dose Estimation (DDE)

- Combine fast and accurate CT dose estimation using a deep convolutional neural network.
- Train the network to reproduce MC dose estimates given the CT image and a first-order dose estimate.

First-Order Dose Estimate

- DDE network needs information about the tube current, the tube voltage, shaped filters etc., which is encoded in the first-order dose estimate.
- First order dose-estimate in a voxel with volume V and mass m at position r:

$$D_{1^{st}}(\mathbf{r}) = \frac{V}{m} \int \frac{d^2 N}{d\Omega dE} \sum_{i=\text{PE, CS}} P_{\text{int},i}(\mathbf{r}, E) E_{\text{dep},i}(E) dE$$

Emission characteristic of the x-ray source (including shaped filters) Interaction probability for photo effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for photo effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction probability for effect (*i* = PE) and Compton scattering (*i* = CS) Interaction proba

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.

Training and Validation

- Simulation of 1440 circular dual-source CT scans ($64 \times 0.6 \text{ mm}$, FOM_A = 50 cm, FOM_B = 32 cm) of thorax, abdomen, and pelvis using 12 different patients.
- Simulation with and without bowtie.
- No data augmentation
- Reconstruction on a 512×512×96 grid with 1 mm voxel size, followed by 2×2×2 binning for dose estimation.

- DDE was trained for 300 epochs on an Nvidia Quadro P6000 GPU using a mean absolute error pixel-wise loss, the Adam optimizer, and a batch size of 4.
- The same weights and biases were used for all cases.

1440 = 12 patients × 20 z-positions × 6 modes (A, A+bowtie, A+bowtie+TCM, B, B+Bowtie, B+bowtie+TCM)

Tube A

Tube B

Results Thorax, tube A, 120 kV, with bowtie

CT image

MC ground truth¹

First order dose

DDE

	МС	DDE
48 slices	1 h	0.25 s
whole body	20 h	5 s

MC uses 16 CPU kernels DDE uses one Nvidia Quadro P600 GPU

DDE training took 74 h for 300 epochs, 1440 samples, 48 slices per sample

Relative error

C = 0%W = 40%

Results Thorax, tube A, 120 kV, no bowtie

CT image

MC ground truth¹

DDE

	МС	DDE
48 slices	1 h	0.25 s
whole body	20 h	5 s

MC uses 16 CPU kernels DDE uses one Nvidia Quadro P600 GPU

DDE training took 74 h for 300 epochs, 1440 samples, 48 slices per sample

Relative error

C = 0%W = 40%

Results Thorax, tube B, 120 kV, no bowtie

CT image

MC ground truth¹

First order dose

1000	
	- - - 1 - 3

DDE

	МС	DDE
48 slices	1 h	0.25 s
whole body	20 h	5 s

MC uses 16 CPU kernels DDE uses one Nvidia Quadro P600 GPU

DDE training took 74 h for 300 epochs, 1440 samples, 48 slices per sample

Relative error

Results Abdomen, tube A, 120 kV, with bowtie

CT image

First order dose

Results Abdomen, tube A, 120 kV, no bowtie

CT image

First order dose

			МС	DDE
		48 slices	1 h	0.25 s
See		whole body	20 h	5 s
		MC uses 16 (DDE uses on	CPU kernels e Nvidia Quadr	o P600 GPU
1		DDE training took 74 h for 300 epochs, 1440 samples, 48 slices per sample		
MC ground truth ¹	DDE	Relative error		
				C = W =

C = 0%*W* = 40%

Results Abdomen, tube B, 120 kV, no bowtie

CT image

First order dose

			МС	DDE
2 Passes 18		48 slices	1 h	0.25 s
Wer		whole body	20 h	5 s
		MC uses 16 CPU kernels DDE uses one Nvidia Quadro P600 GPL		
•		DDE training took 74 h for 300 epochs, 1440 samples, 48 slices per sample		
MC ground truth ¹	DDE	Relative error		
				C = W =

¹M. Baer, M. Kachelrieß. Phys. Med. Biol. 57, 6849–6867, 2012.

0% 40%

Results <u>Pelvis, tube</u> A, 120 kV, with bowtie

Results Pelvis, tube A, 120 kV, no bowtie

Results Pelvis, tube B, 120 kV, no bowtie

Conclusions on DDE

- DDE is able to derive dose estimates with almost similar accuracy as MC (average deviation: 4.6 %).
- Pixel-wise loss is responsible for blurring at edges.
- DDE generalizes to different anatomical regions and is able to handle different fluence fields.
- A 256×256×48 voxel volume with 2 mm voxel size can be processed in 250 ms. Approximately 5 s are required for a whole body scan.
- This study was restricted to training data with a zaxis coverage of about 10 cm (≈ 2.5 × collimation). For practical use, it might be necessary to extend the z-axis coverage to account for all dose contributions.

Interested in more deep learning applications for CT optimization? Come and find out tomorrow 10:30-12:00, EFOMP workshop, room G!

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.