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Windmill Artifacts
in Spiral CT

• Interpolation between adjacent detector rows is 
performed during backprojection in multislice
spiral CT.

• Not satisfying the Nyquist criterion due to 
longitudinal undersampling leads to the
so-called windmill artifacts.

• They are characterized by streaks diverging 
from a focal high-density structure.
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Reconstructions of a phantom scanned 
with a Siemens Somatom Sensation 16 
CT system (16×0.75 mm)
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z-Flying Focal Spot (zFFS)

• Two subsequent readings are slightly 
shifted in z-direction to achieve doubled 
sampling distance in the isocenter1.

• zFFS provided only in high-end CT 
scanners and may prevent the fastest 
scan mode. D
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Without zFFS
collimation: 96×0.6 mm 

With zFFS
collimation: 2zFFS ∙ 96×0.6 mm 

C = 60 HU, W = 360 HU; reconstructed slice width 0.75 mm
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Row Interpolation
with Deep Learning (RIDL)
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Example projection from clinical training dataset

Example projection from synthetic training dataset

• CNN trained to predict upsampled rows for a given input.

• Previously presented network architecture1 was further simplified.

• An experimental synthetic dataset was provided2.

• Training two separate RIDL-CNN networks:
– Clinical dataset consisting of projection data from patient scans acquired with zFFS.

– Synthetic dataset consisting of simulated noise-free projection data of spherical shells.

• Value range of synthetic data linearly scaled to range of clinical data.

Exemplary training patch generation 



C = 0 HU, W =  100 HU

C = 60 HU, W = 260 HU; collimation: 64×0.6 mm;
reconstructed slice width 0.6 mm

Ground truth
with zFFS

Without zFFS
RIDL-CNN trained with

clinical dataset
RIDL-CNN trained with

synthetic dataset

Difference images to a WFBP of corresponding projection data with zFFS. 
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Conclusions

• RIDL significantly reduces windmill artifacts.

• However, it cannot outperform zFFS.

• But it does not require special hardware.

• Training with noise-free synthetic data leads to 
superior performance!
– This can, probably, be attributed to noise in the clinical data. 

– Further evaluation to be performed with more patient scans.

noisy clinical data noisy synthetic data noise-free synthetic data
RIDL
trained on:



Thank You!

This presentation will soon be available at www.dkfz.de/ct 

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (www.dkfz.de), or directly 

through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de). 


