Deep Learning in CT Artifact Correction

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Content

- Metal artifact reduction (MAR)
- Detruncation
- Scatter estimation
- Motion compensation
- Sparse view artifacts → image reconstruction
- Ring artifact reduction
- Limited angle artifacts

DuDoNet: Dual Domain Network for CT Metal Artifact Reduction

Wei-An Lin^{*1} Haofu Liao^{*2} Cheng Peng¹ Xiaohang Sun³ Jingdan Zhang⁴ Jiebo Luo² Rama Chellappa¹ Shaohua Kevin Zhou^{5,6} ¹University of Maryland, College Park ²University of Rochester ³Princeton University ⁴Z2W Corporation ⁵Chinese Academy of Sciences ⁶Peng Cheng Laboratory, Shenzhen

Figure 2: The proposed Dual Domain Network (DuDoNet) for MAR. Given a degraded sinogram Y and a metal trace mask \mathcal{M}_t , DuDoNet reduces metal artifacts by simultaneously refining in the sinogram and image domains.

End-to-end. Both nets are U-Nets. SE-Net is trained with an image-based loss.

Lin, Wei-An, et al. "DuDoNet: Dual Domain Network for CT Metal Artifact Reduction." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.

MAR Example

 Deep CNN-driven patch-based combination of the advantages of several MAR methods trained on simulated artifacts

- followed by segmentation into tissue classes
- followed by forward projection of the CNN prior and replacement of metal areas of the original sinogram
- followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. TMI 37(6):1370-1381, June 2018.

MAR without Machine Learning is a Good Alternative: Frequency Split Normalized MAR^{1,2}

Uncorrected

FSLIMAR

FSNMAR

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C = 40 HU, W = 500 HU).

FSMAR: Scheme

¹E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010 ²E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.

Summary on Deep MAR

- Most common uses for networks:
 - Improve image quality in image domain after MAR
 - Use network for the sinogram inpainting
 - Produce a prior image, e.g. for NMAR (currently the best idea)

Additional observations:

- Training data are often produced by segmenting an artifact-free CT image, adding metal and applying a polychromatic forward projection to different types of tissue separately.
- As of today, it seems hard to outperform NMAR, or hard to give convincing clinical examples.

Deep Detruncation Classification of DL-based reconstruction methods

- S: Sinogram domain network
- I: Image domain network
- P: Projection operation
- R: Reconstruction operation
- F: Dual-domain information fusion operation

T. Wang, et al., A Review of Deep Learning CT Reconstruction from Incomplete Projection Data IEEE Transactions on Radiation and Plasma Medical Sciences, doi: 10.1109/TRPMS.2023.3316349 (2023)

Deep learning -based sinogram extension method for interior computed tomography

Juuso H. J. Ketola^{*a}, Helinä Heino^a, Mikael A. K. Juntunen^{a,b}, Miika T. Nieminen^{a,b,c}, and Satu I. Inkinen^a

^aResearch Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland ^bThe South Savo Health Care Authority, Mikkeli Central Hospital, Oulu, Finland ^cDepartment of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland ^cMedical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland

Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." *Medical Imaging 2021: Physics of Medical Imaging*. Vol. 11595. International Society for Optics and Photonics, 2021.

Figure 3. Example reconstructions. a. Original data from scanner. b. Adaptive de-truncation followed by filtered backprojection. c. Total variation regularization. d. Filtered backprojection. e. FBPConvNet. f. Our Method. Reconstructions have been masked to contain the region-of-interest.

Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." *Medical Imaging 2021: Physics of Medical Imaging*. Vol. 11595. International Society for Optics and Photonics, 2021.

Evaluation of novel AI-based extended field-of-view CT reconstructions

Gabriel Paiva Fonseca^{a)}*

Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, The Netherlands

Matthias Baer-Beck* Eric Fournie and Christian Hofmann

Siemens Healthcare GmbH, Forchheim, Germany

Ilaria Rinaldi, Michel C Ollers, Wouter J.C. van Elmpt and Frank Verhaegen

Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, The Netherlands

(Received 28 February 2021; revised 27 April 2021; accepted for publication 30 April 2021; published 31 May 2021)

Fonseca, Gabriel Paiva, et al. "Evaluation of novel Al-based extended field-of-view CT reconstructions." *Medical Physics* (2021).

ADT corrected

ADT corrected (clipped)

K. Sourbelle, M. Kachelrieß, and W.A. Kalender, "Reconstruction from truncated projections in CT using adaptive detruncation," Eur Radiol 15:1008–1014, 2005.

dkfz.

Summary on Deep Detruncation

- No need for machine learning to restore the gray values within the FOM.
- Image domain cosmetic detruncation (in particular outside the FOM) can serve as an intermediate step to detruncate CT data.

Deep Scatter Estimation

???

In real time?

Monte Carlo Scatter Estimation

- Simulation of photon trajectories according to physical interaction probabilities.
- Simulating a large number ries well hour per tomographic data set approximat
 - suplete scatter distribution

Deep Scatter Estimation

Network architecture & scatter estimation framework

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Testing of the DSE Network for Measured Data (120 kV)

DKFZ table-top CT

- Measurement of a head phantom at our in-house table-top CT.
- Slit scan measurement serves as ground truth.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Reconstructions of Measured Data

C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

CT Reconstruction

Difference to slit scan

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSE

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Scatter in Dual Source CT (DSCT)

C = 40 HU, W = 300 HU, with 2D anti-scatter grid

Scatter in Dual Source CT: xDSE

xDSE (2D, xSSE) maps primary + forward scatter + cross-scatter + cross-scatter approximation \rightarrow cross-scatter

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU

J. Erath, M. Kachelrieß et al. Deep learning-based forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.

Scatter for Coarse ASG

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.

Scatter Artifacts of Coarse ASG

Coarse ASGs can lead to scatter-induced moiré artifacts.

Network Architecture

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.

Results in Reconstructed Images

Simulated Reconstruction C = 0 HU, W = 400 HU, Difference to GT C = 0 HU, W = 50 HU

Results in Reconstructed Images

Ground Truth

Uncorrected

Simulated Reconstruction C = 0 HU, W = 400 HU, Difference to GT C = 0 HU, W = 50 HU

Conclusions on DSE

- DSE needs about 3 ms per CT projection (as of 2020).
- DSE is a fast and accurate alternative to MC simulations.
- DSE outperforms other approaches.
- Facts:
 - DSE can estimate scatter from a single (!) x-ray image.
 - DSE can accurately estimate scatter from a primary+scatter image.
 - DSE generalizes to all anatomical regions.
 - DSE works for geometries and beam qualities differing from training.
 - DSE may outperform MC even though DSE is trained with MC.
- DSE is not restricted to reproducing MC scatter estimates. It can be trained with any other scatter estimate, including those based on measurements.

Deep Cardiac Motion Compensation

Partial Angle-Based Motion Compensation (PAMoCo)

Animated rotation time = 100 × real rotation time

Partial Angle-Based Motion Compensation (PAMoCo)

Partial Angle-Based Motion Compensation (PAMoCo)

/ Motion vector field $\, {f s}_1({f r})$

Apply motion vector fields (MVFs) to partial angle reconstructions

Deep PAMoCo Network architecture

Initial volume (with motion artifacts)

FCN-Layer output: two control points for a cubic spline: for k = -K, and for k = +K. The third control point at k = 0 is (0, 0, 0), i.e. no deformation for the central PAR.

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Results

C = 1000 HU W = 1000 HU

Results

C = 1000 HU *W* = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Results

C = 1100 HU W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Irregular Motion?

See our talk tomorrow

Deep 4D CT and 4D CBCT MoCo of Periodic and Non-Periodic Patient Motion with Single-View Temporal Resolution

Session: **AI applications in CT** Time: **Wednesday, 3:00 PM** (3rd talk) Room: **N227B**

S

- Varian TrueBeam system
- 60 s CBCT acquisiton
- 10 fps detector frame rate
- irregular breathing
- aperiodic motion
- no gating signal
- reconstruction of every time point (600 volumes)
- 100 ms temporal resolution

Are the Methods Reliable?

- Studies about explainability of AI in CT image formation are more than sparse.
- My thoughts:
 - Cosmetic corrections: Unclear if noise reduction, metal artifact reduction etc. is removing/adding lesions. The whole process is a black box.
 - Physical corrections: A clear physical meaning and rawdata fidelity appear more reliable. Examples:
 - » MAR or detruncation networks where the NN output is used only to forward project and inpaint/extrapolate the rawdata
 - Scatter correction that estimates a smooth physically realistic (trained with MC) scatter signal in intensity domain
 - » Use motion compensation networks that estimate motion vectors rather than motion correction networks than manipulate voxel values

Thank You!

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD programs or through marc.kachelriess@dkfz.de. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.