
Deep Monte Carlo

Marc Kachelrieß

German Cancer Research Center (DKFZ)

Heidelberg, Germany

www.dkfz.de/ct

4

Content

• Coarse CNN overview

• Deep scatter estimation

5

Coarse CNN Overview

6

Nomenclature

• Iteration = Epoch

• Batch = Subset (randomly changing for each epoch)

• Loss function = Cost function

• Learning rate = η

7

Fully Connected Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input
e.g. 680×465×3 pixels
e.g.

e.g. 1 label
e.g. Pichlmayrgut

Output:Input:

8

Activation Functions

Function Equation Plot

Identity

Sigmoid

Hard

sigmoid

Tanh

Softsign

Softplus

Function Equation Plot

ReLU

Leaky

ReLU

ELU

Inverse

square root

LU

… … …

9

Loss Function

• The neural networks parameters (weights) w are
chosen by minimizing a loss function (cost function)

with xn being the training data input and yn being the
training data output and N being the number of
training samples.

• An example for the loss function is

10

Gradient Descent

• Walk along the direction of the negative gradient

• Steepest descent

• Learning rate η

• Easy to understand, but not optimal

• Methods in use
– Batch gradient descent

– Sochastic gradient descent

– Mini-batch gradient descent

– Conjugate gradient descent

– Quasi Newton methods

– Momentum methods

– …

11

Convolutional Layers

• Convolution in spatial domain

• Full connectivity in depth

• Filter size = receptive field

• Learns filter kernels

• Less parameters than fully connected net

• Respects properties of many imaging systems

12

Convolution
• Input layer S

– vector of size I with F features: I×F

– image of size I by J with F features: I×J×F

– volume of size I by J by K with F features: I×J×K×F

– …

• Convolution kernel K
– G kernels of size (2A+1)×(2B+1)×F with (e.g. zero) padding

• Output layer D
– same spatial dimensions as input layer

– G features (depth G)

G times
3×3×F

Src
64×64×F

Dst
64×64×G

Attention: No convolution in depth direction!

13

• Input layer S
– image of size I by J with F features: I×J×F

– …

• Pooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides

• Output layer D
– reduced spatial size

– same depth
2×2 stride 2×2

max pool

Pooling

Src
64×64×F

Dst
32×32×F

2×2 with
stride 2

1 1 1 3 2 3 1 2

2 3 0 3 1 9 6 9

1 8 0 4 0 8 9 9

1 1 2 3 9 2 3 1

0 5 1 3 2 1 1 3

1 1 1 1 0 0 1 1

2 5 0 7 1 9 7 9

2 0 0 8 2 4 0 1

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

14

Unpooling
• Input layer S

– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with
stride 2

0 0 0 3 0 0 0 0

0 3 0 3 0 9 0 9

0 8 0 4 0 0 9 9

0 0 0 0 9 0 0 0

0 5 0 3 2 0 0 3

0 0 0 0 0 0 0 0

0 5 0 0 0 9 0 9

0 0 0 8 0 0 0 0

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2
max unpool

Max values at max positions that were originally
found during pooling. Zeroes at non-max positions.

15

Unpooling
Upsampling• Input layer S

– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with
stride 2

3 3 3 3 9 9 9 9

3 3 3 3 9 9 9 9

8 8 4 4 9 9 9 9

8 8 4 4 9 9 9 9

5 5 3 3 2 2 3 3

5 5 3 3 2 2 3 3

5 5 8 8 9 9 9 9

5 5 8 8 9 9 9 9

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2
max unpool

Max values at all positions.

16

Dilated Convolutions

• Convolution

• 8-dilated convolution

• Dilation helps to increase the receptive field of the
kernel without increasing the number of unknowns in
the kernel.

• Similar effect as pooling followed by convolution.

17

Deconvolution

• Transpose of the convolution

• Deconvolution layer is a very unfortunate name and
should rather be called a transposed convolutional
layer.

• Uses the weights of the adjunct convolution

F times
3×3×G

Src
64×64×G

Dst
64×64×F

Convolution

Deconvolution

18

Depth Concatenation

• N input layers Sn

– vector of size I with Fn features: I×Fn

– image of size I by J with Fn features: I×J×Fn

– volume of size I by J by K with Fn features: I×J×K×Fn

– …

• Output layer D
– same spatial dimensions as input layer

– G = F1+F2+…+FN features

Src1

64×64×F1

Dst
64×64×G

Src2

64×64×F2

+ + ….. =

19

U-Net

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

20

Toy Example
Nested 1D functions fn(cn, x) with unknown coefficients cn

1

2

3

4

Backpropagation

desired
gradients

intermediate
values

loss function

21

Neural Network – General Structure

Layer 1
Input layer

Layer 2
Hidden layer

Layer 3
Output layer

22

Neural Network – General Structure
Matrix notation

Layer 1
Input layer

Layer 2
Hidden layer

Layer 3
Output layer

Example: activation of the 3rd layer

24

Optimization of Weights and Biases

• The weights and biases can be optimized using a
gradient descent approach:

25

Optimization of Weights and Biases
Backpropagation

• Backpropagation is an efficient way to calculate the
gradient of the weights and biases.

• Let us define the error of neuron j
in layer l:

• The error of neurons in the last layer is given as:

Proof:

• Vector notation:

26

Optimization of Weights and Biases
Backpropagation

• Given the error in layer l+1, the error of the jth

neuron of the lth layer is calculated as follows:

Proof:

• Vector notation:

27

Optimization of Weights and Biases
Backpropagation

• The partial derivative of the cost function with
respect to the weights is given by:

Proof:

• The partial derivative of the cost function with
respect to the bias is given by:

Proof:

28

The Backpropagation Algorithm

1. Input xn: Set the corresponding activation a1 for the
input layer.

2. Feedforward: For each layer l = 2, …, L compute:

3. Output error: Compute the error vector of layer L:

4. Backpropagate error: For each l = L-1, L-2, …, 2:

5. Output: The gradient of the cost function is given by:

29

Gradient Descent

For each epoch:

Shuffle data

For each (mini-)batch B of size M:

For each sample xn of the (mini-)batch:
i. Set input activation:

ii. Feedforward: For each layer l = 2, 3, …, L compute:

iii. Output error : Compute the vector

iv. Backpropagate the error: For each l = L-1, L-2, …, 2 compute:

Update weights and biases:

30

Batch Normalization

Batch normalization

• normalizes each activation to have zero expectation and unit
variance within the mini batch

• introduces trainable scale and offset for each activation (or for
each feature map) to, potentially, denormalize again

• is part of the model architecture

• reduces the need for dropout

• reduces internal covariate shift and thus accelerates training

• fixes the means and variances of layer inputs

• improves gradient flow through the network

• allows for higher learning rates without the risk of divergence

• prevents the net from getting trapped in saturated modes

• makes it possible to use saturating nonlinearities

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015.

32

Overfitting

• Overfitting means, that the progress on training data
no longer generalizes to test data.

• Overfitting can be prevented by using larger training
sets or by applying regularization techniques.

33

Fitting

34

Fitting

35

Fitting

36

Fitting

underfit reasonable overfit

37

Overfitting

• Assume our training data results from sampling the function
f(x) = 2x at a given number of points.

• Since the sampling might include some random noise, the
samples slightly deviate from the function f(x) = 2x.

• A 9th order polynomial perfectly fits the training data, but fails to
appropriately predict test data such as x = 0.25 for instance.

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points

Linear fit, 10 data points

39

Regularization
Increase of training data

• The increase of the amount of training data makes
the network more robust against single deviations.

• The training data can also be increased artificially.

• Similar results can be observed if the polynomial is
fitted to 100000 samples.

Coefficients Linear 9th order

c0 -0.00295 0.03343

c1 2.000325 1.904762

c2 0.079125

c3 -0.02262

c4 0.000435

c5 -4.96E-05

c6 0.000339

c7 -4.25E-05

c8 -9.19E-06

c9 1.43E-06

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10000*10 data points

Linear fit, 10000*10 data points

41

Regularization
Penalizing large weights

• Modification of the cost function to penalize large
weight (i.e. quadratic penalty):

• If a certain weight is large, the output strongly
depends on the input of that weight.

Coefficients Linear 9th order

c0 -0.00295 0.447558

c1 2.000325 0.575279

c2 0.665781

c3 0.562606

c4 0.049884

c5 -0.45894

c6 0.186099

c7 -0.01496

c8 -0.00342

c9 0.000471

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points, λ = 1

Linear fit, 10 data points

43

Avoid Overfitting

• Choose adequate network architecture

• Preprocess data
– Normalize data (mean, var, …)

– Add prior knowledge (e.g. exp(-x))

• Data augmentation
– Random transformations (mirror, affine, deformable, …)

– Gray value distribution

– Change spatial resolution

– Add noise

– …

• Penalize loss function
– Enforce small weights

– Enforce sparse weights

– …

44

• Training and validation set are part of the training

• Do not use test set for training

• Early stopping (at minimum validation loss)

• Training : Validation : Test ≈ 70 : 20 : 10

Learning Curve

Test Set

epochs

loss

Training Set

epochs

loss

Validation Set

epochs

loss

Stop here!

45

Weight Initialization
• Weights in neural networks should be initialized such that the

neurons are not saturated (since saturation often decreases the
learning rate).

• Assume we have a fully connected network with 1000 input
neurons.

• Let us further assume that half of the input equals 1 and the
other half equals 0.

• If the weights and the bias are initialized with Gaussian random
numbers with zero mean and a standard deviation of 1, the
weighted sum to the first hidden neuron is zero
mean Gaussian with standard deviation .

• Thus, it is very likely that or . Consequently, it is
very likely that the neuron is saturated.

• Therefore, if we have inputs, an initialization with Gaussian
random numbers with zero mean and a standard deviation of
would be a better choice.

46

Libraries

49

Deep Scatter Estimation

50

Motivation

• X-ray scatter is a major cause of image quality
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU

51

Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …

54

• Simulation of photon trajectories according to
physical interaction probabilities.

• Simulating a large number of photon trajectories well
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an
incident needle beam

Complete scatter
distribution

56

Monte Carlo

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to
estimate scatter using a function of the acquired
projection data as input.

Scatter estimate Input:

Convolutional neural network

57

Convolutional Neural Networks
Basic principle

Input: 2nd conv. layer1st conv. layer

…

…

…

Output:
scatter estimate

58

Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application

of operator

Upsampling
to original

size

60

+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 12000 flat detector projection
using data of different heads.

• Simulate different tube voltages.
• Splitting into 80% training and 20%

validation data.
• Optimize weights of the CNN to reproduce

the Monte Carlo scatter estimates:

• Training on a GeForce GTX 1080 for
80 epochs.

61

Testing of the DSE Network for
Simulated Data (at 120 kV)

+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

• Application of the DSE network to predict
scatter for simulated data of a head
(different from training data).

Ground truth

62

• Measurement of a head
phantom at our in-house
table-top CT.

• Slit scan measurement
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

63

Performance for Different Inputs

64

Performance for Different Inputs

65

Ref 1: Kernel-Based Scatter Estimation

• Kernel-based scatter estimation1:
– Estimation of scatter by a convolution of the scatter source term

with a scatter propagation kernel :

MC scatter simulationScatter estimate
Samples of the

training data set

Detector
coordinate

1 B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth
generation CT scanners. Eur. Radiol. 9, 563–569 (1999).

Open
parameters:

Open
parameters:

66

Ref 2: Hybrid Scatter Estimation

• Hybrid scatter estimation2 :
– Estimation of scatter by a convolution of the scatter source term

with a scatter propagation kernel :

Open
parameters:

Open
parameters:

2 M. Baer, M. Kachelrieß: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849–6867 (2012).

Coarse MC simulationScatter estimate
Samples of the test

data set

Detector
coordinate

67

Results – Simulated Projection Data
Scatter ground

truth (GT)
Primary
intensity

(Kernel – GT)
/ GT

(Hybrid - GT|)
/ GT

(DSE – GT)
/ GT

View #1

View #2

View #3

View #4

View #5

Mean absolute
error for all
projections:

14.1 %

Mean absolute
error for all
projections:

7.2 %

Mean absolute
error for all
projections:

1.2 %

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

68

Results – CT Reconstructions of
Simulated Data

No Correction
Kernel-Based Scatter

Estimation

Hybrid Scatter

Estimation

Deep Scatter

Estimation
Ground Truth

D
if
fe

re
n
c
e
 t
o
 i
d
e
a
l

s
im

u
la

ti
o
n

C
T

 R
e
c
o
n
s
tr

u
c
ti
o
n

C = 0 HU, W = 1000 HU

69

Results – CT Reconstructions of
Measured Data

No Correction
Kernel-Based Scatter

Estimation

Hybrid Scatter

Estimation

Deep Scatter

Estimation
Slit Scan

D
if
fe

re
n
c
e
 t
o
 s

lit
 s

c
a
n

C
T

 R
e
c
o
n
s
tr

u
c
ti
o
n

C = 0 HU, W = 1000 HU

Simulation-based
artifact correction

Standard
reconstruction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

Simulation-based removal of
• beam hardening artifacts
• off-focal radiation artifacts
• focal spot blurring artifacts
• detector blurring artifacts

• scatter artifacts
• …

71

Simulation Study: Training Data

Poisson noise

MC scatter

Tube
Voltage:
225 kV,
275 kV,
320 kV

Tilt angle:

0° 30° 60° 90°

Compressor
(Titanium

alloy)

Cylinder
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin
Prefilter:
1.0 mm,
2.0 mm

Isocenter-detector-distance
400 mm, 500 mm, 600 mm

Scaling (size)
0.8, 1.2

• Simulation of 16416 projections using different objects and
parameter settings to train the DSE network.

• Training on a GeForce GTX 1080 for 80 epochs using the Keras
framework, an Adam optimizer and a mini-batch size of 16.

72

• Simulation of a tomography (720 projection / 360°) of five
components using acquisition parameters that differ from the
ones used to generate the training data set.

Simulation Study: Testing Data

Poisson noise

MC scatter

Tube
Voltage:
250 kV

Tilt angle:

15°

Compressor
(Titanium

alloy)

Cylinder
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin
Prefilter:
1.5 mm

Isocenter-detector-distance
550 mm

Scaling (size)
1.0

Profile
(Aluminum)

73

Performance on Testing Data for
Different Inputs

DSE

DSE

DSE

74

Results
Scatter estimates for simulated testing data

Scatter ground
truth (GT)

Primary
intensity

|Kernel - GT|
/ GT

|Hybrid - GT|
/ GT

|DSE - GT|
/ GT

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

Model

Mean
relative

error for all
3600

projections:

13 %

Mean
relative

error for all
3600

projections:

7 %

Mean
relative

error for all
3600

projections:

1 %

75

Scatter free (GT) Kernel-based - GT Hybrid - GT DSE - GTNo correction No correction - GT

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

Results
CT reconstructions of scatter corrected testing data

76

Application to Measured Data

Training Testing

Components

Detector elements 768×768 768×768

Source-detector distance 580 mm 580 mm

Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm

Tilt angle 0°, 30°, 60°, 90° 0°

Tube voltage 100 kV, 110 kV, 120 kV 110 kV

Copper prefilter 1.0 mm, 2.0 mm 2.0 mm

Scaling 1.0 -

Number of projections 8208 720

• Measurement at DKFZ table-top CT
• Tomography of aluminum profile

(720 projections / 360°)
• 110 kV Hamamatsu micro-focus x-

ray tube
• Varian flat detector

77

Results
Performance of DSE for measured data

CT reconstructions

MC scatter |Kernel-based - MC| / MC |Hybrid - MC| / MC |DSE - GT| / MC

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.04, W = 0.06 C = 0 %, W = 50 %

Component

Projection data

Monte Carlo (GT) Kernel-based Hybrid DSENo correction

Mean 720
projections:

2.5 %

Mean 720
projections:

5.4 %

Mean 720
projections:

12.6 %

C
T

 r
e

c
o

n
s

tr
u

c
ti

o
n

D
if

fe
re

n
c

e
 t

o

M
o

n
te

 C
a

rl
o

78

Conclusions

• DSE is a fast (~ 20 ms / projection) and accurate
alternative to Monte Carlo simulation.

• DSE outperforms conventional kernel-based
approaches in terms of accuracy.

• DSE is not restricted to reproduce only Monte Carlo
scatter estimates but can be used with any other
scatter estimate.

79

Adversarial Example

C. Szegedy et al., Intriguing properties of neural networks, arXiv 2014

+

+

+

=

=

=

school bus

bird

temple
common
ostrich

common
ostrich

common
ostrich

80

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or Postdoctoral
Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nürnberg, Germany.

