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Coarse CNN Overview 
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Nomenclature

• Iteration = Epoch

• Batch = Subset (randomly changing for each epoch)

• Loss function = Cost function

• Learning rate = η
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Fully Connected Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 680×465×3 pixels
e.g.

e.g. 1 label
e.g. Pichlmayrgut

Output:Input:
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Activation Functions

Function Equation Plot

Identity

Sigmoid

Hard

sigmoid

Tanh

Softsign

Softplus

Function Equation Plot

ReLU

Leaky

ReLU

ELU

Inverse 

square root

LU

… … …
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Loss Function

• The neural networks parameters (weights) w are 
chosen by minimizing a loss function (cost function)

with xn being the training data input and yn being the 
training data output and N being the number of 
training samples.

• An example for the loss function is
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Gradient Descent

• Walk along the direction of the negative gradient

• Steepest descent

• Learning rate η

• Easy to understand, but not optimal

• Methods in use
– Batch gradient descent

– Sochastic gradient descent

– Mini-batch gradient descent

– Conjugate gradient descent

– Quasi Newton methods

– Momentum methods

– …
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Convolutional Layers

• Convolution in spatial domain

• Full connectivity in depth

• Filter size = receptive field

• Learns filter kernels

• Less parameters than fully connected net

• Respects properties of many imaging systems
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Convolution
• Input layer S

– vector of size I with F features: I×F

– image of size I by J with F features: I×J×F

– volume of size I by J by K with F features: I×J×K×F

– …

• Convolution kernel K
– G kernels of size (2A+1)×(2B+1)×F with (e.g. zero) padding

• Output layer D
– same spatial dimensions as input layer

– G features (depth G)

G times 
3×3×F

Src
64×64×F

Dst
64×64×G

Attention: No convolution in depth direction! 



13

• Input layer S
– image of size I by J with F features: I×J×F

– …

• Pooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– reduced spatial size

– same depth
2×2 stride 2×2

max pool

Pooling

Src
64×64×F

Dst
32×32×F

2×2 with 
stride 2

1 1 1 3 2 3 1 2

2 3 0 3 1 9 6 9

1 8 0 4 0 8 9 9

1 1 2 3 9 2 3 1

0 5 1 3 2 1 1 3

1 1 1 1 0 0 1 1

2 5 0 7 1 9 7 9

2 0 0 8 2 4 0 1

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9
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Unpooling
• Input layer S

– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with 
stride 2

0 0 0 3 0 0 0 0

0 3 0 3 0 9 0 9

0 8 0 4 0 0 9 9

0 0 0 0 9 0 0 0

0 5 0 3 2 0 0 3

0 0 0 0 0 0 0 0

0 5 0 0 0 9 0 9

0 0 0 8 0 0 0 0

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2
max unpool

Max values at max positions that were originally 
found during pooling. Zeroes at non-max positions. 
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Unpooling
Upsampling• Input layer S

– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with 
stride 2

3 3 3 3 9 9 9 9

3 3 3 3 9 9 9 9

8 8 4 4 9 9 9 9

8 8 4 4 9 9 9 9

5 5 3 3 2 2 3 3

5 5 3 3 2 2 3 3

5 5 8 8 9 9 9 9

5 5 8 8 9 9 9 9

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2
max unpool

Max values at all positions. 
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Dilated Convolutions

• Convolution

• 8-dilated convolution

• Dilation helps to increase the receptive field of the 
kernel without increasing the number of unknowns in 
the kernel.

• Similar effect as pooling followed by convolution.
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Deconvolution

• Transpose of the convolution

• Deconvolution layer is a very unfortunate name and 
should rather be called a transposed convolutional 
layer.

• Uses the weights of the adjunct convolution

F times 
3×3×G

Src
64×64×G

Dst
64×64×F

Convolution

Deconvolution
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Depth Concatenation

• N input layers Sn

– vector of size I with Fn features: I×Fn

– image of size I by J with Fn features: I×J×Fn

– volume of size I by J by K with Fn features: I×J×K×Fn

– …

• Output layer D
– same spatial dimensions as input layer

– G = F1+F2+…+FN features

Src1

64×64×F1

Dst
64×64×G

Src2

64×64×F2

+ +    …..      =
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U-Net

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960
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Toy Example
Nested 1D functions fn(cn, x) with unknown coefficients cn

1

2

3

4

Backpropagation

desired 
gradients

intermediate 
values

loss function
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Neural Network – General Structure

Layer 1
Input layer

Layer 2
Hidden layer

Layer 3
Output layer
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Neural Network – General Structure
Matrix notation

Layer 1
Input layer

Layer 2
Hidden layer

Layer 3
Output layer

Example: activation of the 3rd layer
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Optimization of Weights and Biases

• The weights and biases can be optimized using a 
gradient descent approach:
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Optimization of Weights and Biases
Backpropagation

• Backpropagation is an efficient way to calculate the 
gradient of the weights and biases.

• Let us define the error     of neuron j                                     
in layer l:

• The error of neurons in the last layer is given as:

Proof:

• Vector notation: 
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Optimization of Weights and Biases
Backpropagation

• Given the error        in layer l+1, the error of the jth

neuron of the lth layer is calculated as follows:

Proof: 

• Vector notation: 
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Optimization of Weights and Biases
Backpropagation

• The partial derivative of the cost function with 
respect to the weights is given by:

Proof: 

• The partial derivative of the cost function with 
respect to the bias is given by:

Proof:
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The Backpropagation Algorithm

1. Input xn: Set the corresponding activation a1 for the 
input layer.

2. Feedforward: For each layer l = 2, …, L compute:

3. Output error: Compute the error vector of layer L:

4. Backpropagate error: For each l = L-1, L-2, …, 2:

5. Output: The gradient of the cost function is given by:
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Gradient Descent

For each epoch:

Shuffle data

For each (mini-)batch B of size M:

For each sample xn of the (mini-)batch:
i. Set input activation:

ii. Feedforward: For each layer l = 2, 3, …, L compute:

iii. Output error : Compute the vector

iv. Backpropagate the error: For each l = L-1, L-2, …, 2 compute:

Update weights and biases:
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Batch Normalization

Batch normalization

• normalizes each activation to have zero expectation and unit 
variance within the mini batch

• introduces trainable scale and offset for each activation (or for 
each feature map) to, potentially, denormalize again

• is part of the model architecture

• reduces the need for dropout

• reduces internal covariate shift and thus accelerates training

• fixes the means and variances of layer inputs 

• improves gradient flow through the network

• allows for higher learning rates without the risk of divergence

• prevents the net from getting trapped in saturated modes

• makes it possible to use saturating nonlinearities

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015.
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Overfitting

• Overfitting means, that the progress on training data 
no longer generalizes to test data.

• Overfitting can be prevented by using larger training 
sets or by applying regularization techniques.
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Fitting
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Fitting
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Fitting
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Fitting

underfit reasonable overfit
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Overfitting

• Assume our training data results from sampling the function 
f(x) = 2x at a given number of points. 

• Since the sampling might include some random noise, the 
samples slightly deviate from the function f(x) = 2x.

• A 9th order polynomial perfectly fits the training data, but fails to 
appropriately predict test data such as x = 0.25 for instance.

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points

Linear fit, 10 data points
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Regularization
Increase of training data

• The increase of the amount of training data makes 
the network more robust against single deviations.

• The training data can also be increased artificially.

• Similar results can be observed if the polynomial is 
fitted to 100000 samples.

Coefficients Linear 9th order

c0 -0.00295 0.03343

c1 2.000325 1.904762

c2 0.079125

c3 -0.02262

c4 0.000435

c5 -4.96E-05

c6 0.000339

c7 -4.25E-05

c8 -9.19E-06

c9 1.43E-06

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10000*10 data points

Linear fit, 10000*10 data points
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Regularization
Penalizing large weights

• Modification of the cost function to penalize large 
weight (i.e. quadratic penalty):                      

• If a certain weight is large, the output strongly 
depends on the input of that weight.

Coefficients Linear 9th order

c0 -0.00295 0.447558

c1 2.000325 0.575279

c2 0.665781

c3 0.562606

c4 0.049884

c5 -0.45894

c6 0.186099

c7 -0.01496

c8 -0.00342

c9 0.000471

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points, λ = 1

Linear fit, 10 data points



43

Avoid Overfitting

• Choose adequate network architecture

• Preprocess data
– Normalize data (mean, var, …)

– Add prior knowledge (e.g. exp(-x))

• Data augmentation
– Random transformations (mirror, affine, deformable, …)

– Gray value distribution

– Change spatial resolution

– Add noise

– …

• Penalize loss function
– Enforce small weights

– Enforce sparse weights

– …
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• Training and validation set are part of the training

• Do not use test set for training

• Early stopping (at minimum validation loss)

• Training : Validation : Test    ≈ 70 : 20 : 10

Learning Curve

Test Set

epochs

loss

Training Set

epochs

loss

Validation Set

epochs

loss

Stop here!
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Weight Initialization
• Weights in neural networks should be initialized such that the 

neurons are not saturated (since saturation often decreases the 
learning rate).

• Assume we have a fully connected network with 1000 input 
neurons.

• Let us further assume that half of the input equals 1 and the 
other half equals 0.

• If the weights and the bias are initialized with Gaussian random 
numbers with zero mean and a standard deviation of 1, the 
weighted sum                       to the first hidden neuron is zero 
mean Gaussian with standard deviation                       . 

• Thus, it is very likely that            or            . Consequently, it is 
very likely that the neuron is saturated.

• Therefore, if we have        inputs, an initialization with Gaussian 
random numbers with zero mean and a standard deviation of           
would be a better choice.      



46

Libraries
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Deep Scatter Estimation
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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Monte Carlo

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network
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Convolutional Neural Networks
Basic principle

Input: 2nd conv. layer1st conv. layer

…

…

…

Output: 
scatter estimate
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 12000 flat detector projection 
using data of different heads.

• Simulate different tube voltages.
• Splitting into 80% training and 20% 

validation data.
• Optimize weights of the CNN to reproduce 

the Monte Carlo scatter estimates:

• Training on a GeForce GTX 1080 for
80 epochs.
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Testing of the DSE Network for 
Simulated Data (at 120 kV)

+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

• Application of the DSE network to predict 
scatter for simulated data of a head 
(different from training data).

Ground truth
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT
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Performance for Different Inputs
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Performance for Different Inputs
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Ref 1: Kernel-Based Scatter Estimation

• Kernel-based scatter estimation1:
– Estimation of scatter by a convolution of the scatter source term      

with a scatter propagation kernel            :

MC scatter simulationScatter estimate
Samples of the 

training data set

Detector 
coordinate

1 B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth 
generation CT scanners. Eur. Radiol. 9, 563–569 (1999). 

Open 
parameters:

Open 
parameters:
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Ref 2: Hybrid Scatter Estimation

• Hybrid scatter estimation2 :
– Estimation of scatter by a convolution of the scatter source term      

with a scatter propagation kernel            :

Open 
parameters:

Open 
parameters:

2 M. Baer, M. Kachelrieß: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849–6867 (2012). 

Coarse MC simulationScatter estimate
Samples of the test 

data set

Detector 
coordinate
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Results – Simulated Projection Data
Scatter ground 

truth (GT)
Primary 
intensity

(Kernel – GT) 
/ GT 

(Hybrid - GT|)
/ GT

(DSE – GT)    
/ GT

View #1

View #2

View #3

View #4

View #5

Mean absolute 
error for all 
projections:

14.1 %

Mean absolute 
error for all 
projections:

7.2 %

Mean absolute 
error for all 
projections:

1.2 %

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04
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Results – CT Reconstructions of 
Simulated Data

No Correction
Kernel-Based Scatter 

Estimation

Hybrid Scatter 

Estimation

Deep Scatter 

Estimation
Ground Truth

D
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C = 0 HU, W = 1000 HU
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Results – CT Reconstructions of 
Measured Data

No Correction
Kernel-Based Scatter 

Estimation

Hybrid Scatter 

Estimation

Deep Scatter 

Estimation
Slit Scan

D
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C
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C = 0 HU, W = 1000 HU



Simulation-based 
artifact correction

Standard 
reconstruction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for 
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

Simulation-based removal of
• beam hardening artifacts
• off-focal radiation artifacts
• focal spot blurring artifacts
• detector blurring artifacts

• scatter artifacts
• …
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Simulation Study: Training Data

Poisson noise

MC scatter 

Tube 
Voltage:
225 kV, 
275 kV, 
320 kV 

Tilt angle:

0° 30° 60° 90°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.0 mm, 
2.0 mm

Isocenter-detector-distance
400 mm, 500 mm, 600 mm  

Scaling (size)
0.8, 1.2

• Simulation of 16416 projections using different objects and 
parameter settings to train the DSE network.

• Training on a GeForce GTX 1080 for 80 epochs using the Keras
framework, an Adam optimizer and a mini-batch size of 16.
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• Simulation of a tomography (720 projection / 360°) of five 
components using acquisition parameters that differ from the 
ones used to generate the training data set.

Simulation Study: Testing Data

Poisson noise

MC scatter 

Tube 
Voltage:
250 kV

Tilt angle:

15°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.5 mm

Isocenter-detector-distance
550 mm

Scaling (size)
1.0

Profile
(Aluminum)
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Performance on Testing Data for 
Different Inputs

DSE

DSE

DSE
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Results
Scatter estimates for simulated testing data

Scatter ground 
truth (GT)

Primary 
intensity

|Kernel - GT| 
/ GT 

|Hybrid - GT| 
/ GT

|DSE - GT| 
/ GT

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.5, W = 1.0

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0.015, W = 0.020

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

C = 0 %, W = 50 %

Model

Mean 
relative 

error for all 
3600 

projections:

13 %

Mean 
relative 

error for all 
3600 

projections:

7 %

Mean 
relative 

error for all 
3600 

projections:

1 %
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Scatter free  (GT) Kernel-based - GT Hybrid - GT DSE - GTNo correction No correction - GT

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

Results
CT reconstructions of scatter corrected testing data
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Application to Measured Data

Training Testing

Components

Detector elements 768×768 768×768

Source-detector distance 580 mm 580 mm

Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm

Tilt angle 0°, 30°, 60°, 90° 0°

Tube voltage 100 kV, 110 kV, 120 kV 110 kV

Copper prefilter 1.0 mm, 2.0 mm 2.0 mm

Scaling 1.0 -

Number of projections 8208 720

• Measurement at DKFZ table-top CT
• Tomography of aluminum profile   

(720 projections / 360°)
• 110 kV Hamamatsu micro-focus x-

ray tube
• Varian flat detector 
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Results
Performance of DSE for measured data

CT reconstructions

MC scatter |Kernel-based - MC| / MC |Hybrid - MC| / MC |DSE - GT| / MC

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.04, W = 0.06 C = 0 %, W = 50 %

Component

Projection data

Monte Carlo  (GT) Kernel-based Hybrid DSENo correction

Mean 720 
projections:

2.5 %

Mean 720 
projections:

5.4 %

Mean 720 
projections:

12.6 %
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Conclusions

• DSE is a fast (~ 20 ms / projection) and accurate 
alternative to Monte Carlo simulation.

• DSE outperforms conventional kernel-based 
approaches in terms of accuracy.

• DSE is not restricted to reproduce only Monte Carlo 
scatter estimates but can be used with any other 
scatter estimate.
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Adversarial Example

C. Szegedy et al., Intriguing properties of neural networks, arXiv 2014

+

+

+

=

=

=

school bus

bird

temple
common
ostrich

common
ostrich

common
ostrich
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nürnberg, Germany.


