Deep Patient Motion Estimation: Pretraining, Overfitting, or Pretraining and Overfitting?

Timothy Herbst^{1,2}, Joscha Maier¹, Marcel Arheit³, Pascal Paysan³, and Marc Kachelrieß^{1,2}

 ¹German Cancer Research Center (DKFZ), Heidelberg, Germany
²Ruprecht-Karls-Universität, Heidelberg, Germany
³Varian Medical Systems, a Siemens Healthineers Company, Palo Alto, USA

Network Design

Fig. 1: Method for training StdRegNet.

$$\mathcal{L} = ||\mathrm{Dst} - T(\mathrm{Src})||_2^2 + \lambda^2 ||\nabla \mathrm{DVF}||_2^2$$

with $\lambda = 410 \text{ HU}$

Registration Result

DEEDS algorithm: M. P. Heinrich, et al., IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1239-1248, 2013. M. P. Heinrich, et al., ISBI, New York, NY, USA, 2015.

Left and middle: C = 0 HU, W = 2000 HU Right: C = 0 mm, W = 40 mm

Conclusions

RMSE Differ-	DVF=0,	DEEDS	Pretrained	Overfitted	Pretrained
ence of <i>T</i> (Src)	<i>T(</i> Src)=				Overfitted
with Dst using	Src				
Patient Fig. 1	184 HU	57 HU	57 HU	63 HU	44 HU
Average over	(134 ±	(48 ± 4)	(41 ± 6)	(55 ± 6)	(35 ± 4)
all test	20) HU	HU	HU	HU	HU
patients					

 While all described methods produce good results, the best results are achieved by a network that is first pretrained and then overfitted to estimate motion.

Thank You!

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This study was supported by Varian Medical Systems, a Siemens Healthineers Company, and by the Society of High Performance Computational Imaging (SHPCI) e.V..

Job opportunities through DKFZ's international PhD programs or through marc.kachelriess@dkfz.de.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

Varia

