DeepRAR: A CNN-Based Approach for CT and CBCT Ring Artifact Reduction

Philip Trapp^{1,2}, Tim Vöth^{1,2,3}, Carlo Amato^{1,2}, Stefan Sawall^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-University, Heidelberg, Germany ³Ziehm Imaging GmbH, Nürnberg, Germany

Motivation and Background

- Every X-ray detector exhibits systematic measurement deviations due to transmission errors of the detector pixels.
- The reason for such transmission errors are manifold, they may for instance be caused by
 - different dark currents of the photodiodes.
 - irregularities in the detector material (scintillator or semiconductor).
 - deviations of the channel sizes.
 - general differences in signal conversion and amplification processes of an X-ray signal into an electric current.
- These transmission errors, besides stochastic deviations, result in signal height differences between detector pixels, even if they are exposed to the same X-ray intensity.

Motivation and Background – Ring Artifacts in CT Images

- If deviations of the signal heights are not compensated, artifacts occur in the reconstructed CT images.
- These artifacts appear in the form of rings in the reconstructed volume for circular trajectories.

Sinogram

Projection data acquisition

Motivation and Background – Ring Artifacts in CT Images

- If deviations of the signal heights are not compensated, artifacts occur in the reconstructed CT images.
- These artifacts appear in the form of rings in the reconstructed volume for circular trajectories.

Reconstructed volume

Motivation and Background – Further Characteristics of Ring Artifacts

- The width of the rings may vary due to the point-spread function (PSF) of the detector and the frequency of the disturbance.
- The intensity of ring artifacts is decreasing for increasing distances to the center of rotation.
- Partial ring artifacts may also occur, due to
 - a stochastical behaviour of the aforementioned effects.
 - spiral CT trajectories.

Two exemplary CT images of an air measurement with a CBCT setup. (Partial) Ring artifacts of different frequencies and intensities may occur.

Methods for Ring Artifact Reduction

Properly calibrated flat field corrections

» Schmidgunst et al. (2007), Medical Physics

Rawdata-based methods:

- extract and remove lines from sinograms by filter operations
 - » Anas et al. (2010), Phys. Med. Biol.
 - » Kim et al. (2014), Optics Express
 - » Clark et al. (2017), PloS one
 - » Ours (after Clark et al. but lowpass acting on 2D intensity projections instead of log-sinograms)
- learning-based algorithms
 - » Nauwynck et al. (2020), CT Meeting
 - » Fang et al. (2020), IEEE Access

Image-based methods:

- resampling on a polar grid and extract and remove lines by filter operations
 - » Syjbers et al. (2004), Phys. Med. Biol.
 - » Kyriakou et al. (2009), Phys. Med. Biol.
 - » Prell et al. (2009), Phys. Med. Biol.
- learning-based algorithms
 - » Lv et al. (2020), IEEE Access
 - » Chao et al. (2020), Phys. Med. Biol.
 - » Fang et al. (2020), IEEE Access

Polar grid resampling example from Prell et al.

Aim

 To reduce ring and partial ring artifacts using a convolutional neural network (CNN) in image domain without the necessity of resampling to another coordinate system.

Such a solution would be beneficial because

- the availability of rawdata is not required.
- no resampling to another coordinate system, e.g. a polar grid, is required.
- no fine-tuning of correction parameters (e.g. filter parameters) is required.

Material and Methods

 Training and validation of the neural network were performed on simulated datasets and supervised learning was used.

- For testing, both simulated data and measured photon counting (PC) micro CT data were used.

- Artifact-free diagnostic CT volumes were forward projected in a CBCT geometry (R_{FD} = 1080 mm).
 - Thorax and abdomen data were used for training ($R_F = 620$ mm).
 - Head data were used for validation and testing ($R_F = 855$ mm).
- Ring artifacts were simulated by adding random gains g and offsets o to the true signal *T*:

 $M(\alpha, u, v) = g(\alpha, u, v) T(\alpha, u, v) + o(\alpha, u, v)$

- The reconstruction $X^{-1}(-\ln(M))$ thus contains ring artifacts.

• For a realistic simulation of g and o, patches from CBCT flat field images were randomly sampled and combined:

Material and Methods

$M(\alpha, u, v) = g(\alpha, u, v) T(\alpha, u, v) + o(\alpha, u, v)$

- Weights were randomly assigned to each gain and offset projection to model different artifact strengths.
- A subset of pixels (1 to 10 percent per CT dataset) changes its behaviour once or multiple times during a scan (at some α) to model temporal signal deviations leading to partial rings.
- Different levels of Poisson noise were added to each dataset.
 - Photon numbers varied from N_P =500k to N_P =2.5M photons per pixel (unattenuated)
- A total of 18944 CT images were simulated with and without ring artifacts.
 - 65% Training data (abdomen and thorax CT images)
 - 25% Validation data (head CT images)
 - 10% Test data (head CT images)

Network Architectures

- Three different network architectures were tested.
 - The cartesian image domain U-Net¹ (2D) of Fang et al.² was implemented as reference method.
- All DeepRAR networks have the basis structure of an U-Net¹, differing in their dimensionality:
 - 2D network using 2D convolutions with a single CT image (or patch) as input
 - 2.5D network using 2D convolutions with three adjacent CT images (or patches) as inputs
 - 3D network using 3D convolutions with a stack of CT image patches as input
- Each network estimates the residual, thus image (patches) containing ring artifacts only.

¹Ronneberger et al., *U-net: CNNs for biomedical image segmentation*, Conference on Medical image computing [...], 2015 ²Fang et al., Removing Ring Artefacts for PC Detectors Using Neural Networks in Different Domains, IEEE Access, 2020

MAE = 0 HU

MAE = 0 HU

Test Patient Results (2) – Patch-Based Training C=50 HU, W=500 HU Fang et al. **Ground Truth** Uncorrected 2D-DeepRAR 2.5D-DeepRAR patch-based training **3D-DeepRAR** (Image Domain U-net) patch-based training patch-based training

patch-based training

MAE = 0 HU

MAE = 10 HU

MAE = 11 HU

MAE = 0 HU

MAE = 11 HU

MAE = 11 HU

Patient 4

Experimental Setup

- DeepRAR was also tested on micro-CT data from our experimental gantry³.
- CT system equipped with
 - Hamamatsu microfocus X-ray tube
 - Dectris Säntis photon counting detector
- Due to dynamic polarization of the sensor material, PCCT is particularly susceptible to ring artifacts⁴!
- Scanning parameters for mouse measurements:
 - Tube voltage: 90 kV
 - Tube current: 556 μA
 - Prefiltration: none
 - Frame rate: 65 Hz
 - Projections per rotation: 656
 - Rotations: 6 (60.5 s)
 - Energy threshold: 20 keV

Experimental gantry located at the DKFZ

³Sawall, Kachelrieß et al., *Coronary micro-computed tomography angiography in mice*, Sci. Rep., Volume 10, Nr. 16866, 2020 ⁴Szeles et al., *CdZnTe semiconductor detectors for spectroscopic X-ray im.*, IEEE Trans. on Nuc. Sc., Volume 55, Nr. 1, 2008

Reference Method: Rawdata-based RAR

- A ring artifact correction with 2.5D-DeepRAR is compared to a rawdata-based RAR method inspired by Clark et al.⁵
- The correction steps of this method include:
 - Averaging the projection images in intensity domain
 - Apply a 2D median filter* to the average image
 - Subtract the lowpass filtered image from the average projection → approximation of ring artifacts
 - Subtract the ring artifact "projection" from measured intensities, take the logarithm and reconstruct the data

⁵Clark et al., *Hybrid spectral CT reconstruction*, PloS one, Volume 12, Nr. 7, 2017 *The filter parameters must be carefully set to remove all artifacts and not create new ones.

Results: Measured PC Micro CT Data

Uncorrected

Reference correction (rawdata-based)

2.5D-DeepRAR (patch-based training)

C=500 HU, W=1500 HU

- Ring and partial ring artifacts could be reduced with all of the tested networks.
- DeepRAR is able to improve image quality, which was shown in simulations and measured PC micro CT data.
 - Parameter optimization or a resampling, e.g. on a polar grid, can thus be avoided.
- Training based on image patches has proven to be beneficial.
 - This is probably because the likelihood of overfitting to the anatomies used for training may be reduced, leading to a better generalizability of a so trained network.
- 2.5D-DeepRAR yields the best results for the simulated and measured test data.
 - Using a 2.5D architecture may be beneficial for the ring artifact reduction task.
 - The CNN probably benefits from information of adjacent slices about the artifacts it intends to correct.
- Some problems remain a challenge, particularly
 - Ring artifacts of very low frequency
 - Very strong ring artifacts, e.g. at the center of rotation

Thank You!

This study was supported in parts by the BMBF under grant number 13N14804.

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

