
Philip Trapp1,2, Tim Vöth1,2,3, Carlo Amato1,2,
Stefan Sawall1,2, and Marc Kachelrieß1,2

1German Cancer Research Center (DKFZ), Heidelberg, Germany
2Ruprecht-Karls-University, Heidelberg, Germany

3Ziehm Imaging GmbH, Nürnberg, Germany

DeepRAR: A CNN-Based Approach for 
CT and CBCT Ring Artifact Reduction



2

Motivation and Background

• Every X-ray detector exhibits systematic measurement 
deviations due to transmission errors of the detector pixels.

• The reason for such transmission errors are manifold, they may 
for instance be caused by

– different dark currents of the photodiodes.

– irregularities in the detector material (scintillator or semiconductor).

– deviations of the channel sizes.

– general differences in signal conversion and amplification processes of an 
X-ray signal into an electric current.

• These transmission errors, besides stochastic deviations, result 
in signal height differences between detector pixels, even if 
they are exposed to the same X-ray intensity. 
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Motivation and Background –
Ring Artifacts in CT Images

• If deviations of the signal heights are not compensated, 
artifacts occur in the reconstructed CT images. 

• These artifacts appear in the form of rings in the reconstructed 
volume for circular trajectories.

Sinogram

Projection data acquisition
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Motivation and Background –
Ring Artifacts in CT Images

• If deviations of the signal heights are not compensated, 
artifacts occur in the reconstructed CT images. 

• These artifacts appear in the form of rings in the reconstructed 
volume for circular trajectories.

Reconstructed volume
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Motivation and Background –
Further Characteristics of Ring Artifacts

• The width of the rings may vary due to the point-spread function 
(PSF) of the detector and the frequency of the disturbance.

• The intensity of ring artifacts is decreasing for increasing 
distances to the center of rotation.

• Partial ring artifacts may also occur, due to

– a stochastical behaviour of the aforementioned effects.

– spiral CT trajectories. 

Two exemplary CT images of an air measurement with a CBCT setup. 
(Partial) Ring artifacts of different frequencies and intensities may occur.

C = -1000 HU / W = 1000 HU C = -1000 HU / W = 2000 HU
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Methods for Ring Artifact Reduction

• Properly calibrated flat field corrections
» Schmidgunst et al. (2007), Medical Physics

• Rawdata-based methods:
– extract and remove lines from sinograms by filter operations

» Anas et al. (2010), Phys. Med. Biol.

» Kim et al. (2014), Optics Express

» Clark et al. (2017), PloS one

» Ours (after Clark et al. but lowpass acting on 2D intensity projections instead of log-sinograms)

– learning-based algorithms

» Nauwynck et al. (2020), CT Meeting

» Fang et al. (2020), IEEE Access

• Image-based methods:
– resampling on a polar grid and extract and remove lines by filter operations

» Syjbers et al. (2004), Phys. Med. Biol.

» Kyriakou et al. (2009), Phys. Med. Biol.

» Prell et al. (2009), Phys. Med. Biol.

– learning-based algorithms

» Lv et al. (2020), IEEE Access

» Chao et al. (2020), Phys. Med. Biol.

» Fang et al. (2020), IEEE Access
Polar grid resampling example from Prell et al. 
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Aim

• To reduce ring and partial ring artifacts using a 
convolutional neural network (CNN) in image domain 
without the necessity of resampling to another 
coordinate system.

• Such a solution would be beneficial because
– the availability of rawdata is not required.

– no resampling to another coordinate system, e.g. a polar grid, is 
required.

– no fine-tuning of correction parameters (e.g. filter parameters) is 
required.



Material and Methods
• Training and validation of the neural network were performed on 

simulated datasets and supervised learning was used.
– For testing, both simulated data and measured photon counting (PC) micro CT data were used.

• Artifact-free diagnostic CT volumes were forward projected in a CBCT 
geometry (RFD = 1080 mm). 

– Thorax and abdomen data were used for training (RF = 620 mm).

– Head data were used for validation and testing (RF = 855 mm).

• Ring artifacts were simulated by adding random gains g and offsets o
to the true signal T:

– The reconstruction X-1(-ln(M)) thus contains ring artifacts.

• For a realistic simulation of g and o, patches from CBCT flat field 
images were randomly sampled and combined:

…

Flat field images Flat field images patches

… …

Gain “projections” g Offset “projections” o
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Material and Methods

• Weights were randomly assigned to each gain and offset 
projection to model different artifact strengths. 

• A subset of pixels (1 to 10 percent per CT dataset) changes its 
behaviour once or multiple times during a scan (at some α) to 
model temporal signal deviations leading to partial rings.

• Different levels of Poisson noise were added to each dataset.
– Photon numbers varied from NP=500k to NP=2.5M photons per pixel (unattenuated)

• A total of 18944 CT images were simulated with and without ring 
artifacts.
– 65% Training data (abdomen and thorax CT images)

– 25% Validation data (head CT images)

– 10% Test data (head CT images)
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• Three different network architectures were tested.
– The cartesian image domain U-Net1 (2D) of Fang et al.2 was implemented as reference method.

• All DeepRAR networks have the basis structure of an U-Net1, differing in 
their dimensionality:
– 2D network using 2D convolutions with a single CT image (or patch) as input

– 2.5D network using 2D convolutions with three adjacent CT images (or patches) as inputs

– 3D network using 3D convolutions with a stack of CT image patches as input

• Each network estimates the residual, thus image (patches) containing 
ring artifacts only.

3x3(x3) Convolution, Stride 1

Max. Pooling

16 channels

128 channels Upsampling

1x1(x1) Convolution, Stride 1

Network Architectures

32 channels

64 channels

1Ronneberger et al., U-net: CNNs for biomedical image segmentation, Conference on Medical image computing […], 2015
2Fang et al., Removing Ring Artefacts for PC Detectors Using Neural Networks in Different Domains, IEEE Access, 2020

Input 2D:    1024 × 1024 × 1 × 1
or: 64 × 64 × 1 × 1

Input 2.5D: 1024 × 1024 × 1 × 7
or: 64 × 64 × 1 × 7

Input 3D:          64 × 64 × 64 × 1

Target 2D:     1024 × 1024 × 1 × 1
or: 64 × 64 × 1 × 1

Target 2.5D:  1024 × 1024 × 1 × 1
or: 64 × 64 × 1 × 1

Target 3D:  64 × 64 × 64 × 1

Inputs Targets

2D

2.5D

3Dpatch-based

2Dpatch-based

2.5Dpatch-based
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Test Patient Results (1)
UncorrectedGround Truth 2D-DeepRAR 2.5D-DeepRAR 3D-DeepRAR

patch-based training

Fang et al. 
(Image Domain U-net)

C=50 HU, W=500 HU

MAE = 49 HUMAE = 0 HU MAE = 27 HU MAE = 28 HU MAE = 22 HUMAE = 32 HU
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MAE = 29 HUMAE = 0 HU MAE = 15 HU MAE = 15 HU MAE = 13 HUMAE = 17 HU
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Test Patient Results (1) – Patch-Based Training
UncorrectedGround Truth 2D-DeepRAR

patch-based training
2.5D-DeepRAR

patch-based training
3D-DeepRAR

patch-based training

Fang et al. 
(Image Domain U-net)

patch-based training

C=50 HU, W=500 HU

MAE = 49 HUMAE = 0 HU MAE = 22 HU
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MAE = 29 HUMAE = 0 HU MAE = 12 HU MAE = 11 HU MAE = 13 HUMAE = 15 HU

MAE = 20 HU MAE = 18 HUMAE = 26 HU
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Test Patient Results (2) – Patch-Based Training
UncorrectedGround Truth 2D-DeepRAR

patch-based training
2.5D-DeepRAR

patch-based training
3D-DeepRAR

patch-based training

Fang et al. 
(Image Domain U-net)

patch-based training

C=50 HU, W=500 HU

MAE = 25 HUMAE = 0 HU
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MAE = 11 HUMAE = 10 HU MAE = 10 HUMAE = 13 HU

MAE = 28 HUMAE = 0 HU MAE = 11 HU MAE = 10 HU MAE = 11 HUMAE = 12 HU
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Experimental Setup

• DeepRAR was also tested on
micro-CT data from our
experimental gantry3.

• CT system equipped with
– Hamamatsu microfocus X-ray tube

– Dectris Säntis photon counting
detector

• Due to dynamic polarization of
the sensor material, PCCT is
particularly susceptible to ring
artifacts4!

• Scanning parameters for
mouse measurements:

– Tube voltage: 90 kV

– Tube current: 556 µA

– Prefiltration: none

– Frame rate: 65 Hz

– Projections per rotation: 656

– Rotations: 6 (60.5 s)

– Energy threshold: 20 keV

Experimental gantry located at the DKFZ

3Sawall, Kachelrieß et al., Coronary micro-computed tomography angiography in mice, Sci. Rep., Volume 10, Nr. 16866, 2020
4Szeles et al., CdZnTe semiconductor detectors for spectroscopic X-ray im., IEEE Trans. on Nuc. Sc., Volume 55, Nr. 1, 2008
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Reference Method:
Rawdata-based RAR

• A ring artifact correction with 2.5D-DeepRAR is compared to a 
rawdata-based RAR method inspired by Clark et al.5

• The correction steps of this method include:

– Averaging the projection images in intensity domain

– Apply a 2D median filter* to the average image

– Subtract the lowpass filtered image from the average projection 
approximation of ring artifacts

– Subtract the ring artifact “projection” from measured intensities, take the 
logarithm and reconstruct the data

5Clark et al., Hybrid spectral CT reconstruction, PloS one, Volume 12, Nr. 7, 2017
*The filter parameters must be carefully set to remove all artifacts and not create new ones.

.
..

average highpass*

measured
intensities

.
..

corrected
intensities

log & 
recon.
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Results: Measured PC Micro CT Data
2.5D-DeepRAR

(patch-based training)
Uncorrected Reference correction

(rawdata-based)

C=500 HU, W=1500 HU
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Conclusions

• Ring and partial ring artifacts could be reduced with all of the tested 
networks.

• DeepRAR is able to improve image quality, which was shown in 
simulations and measured PC micro CT data.

– Parameter optimization or a resampling, e.g. on a polar grid, can thus be avoided.

• Training based on image patches has proven to be beneficial.

– This is probably because the likelihood of overfitting to the anatomies used for 
training may be reduced, leading to a better generalizability of a so trained 
network.

• 2.5D-DeepRAR yields the best results for the simulated and 
measured test data.

– Using a 2.5D architecture may be beneficial for the ring artifact reduction task.

– The CNN probably benefits from information of adjacent slices about the artifacts 
it intends to correct.

• Some problems remain a challenge, particularly

– Ring artifacts of very low frequency 

– Very strong ring artifacts, e.g. at the center of rotation
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Thank You!

This study was supported in parts by the BMBF under grant 
number 13N14804.

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


