## Focal Spot Deconvolution using Deep Convolutional Neural Networks

Jan Kuntz, Joscha Maier, Marc Kachelrieß, and Stefan Sawall

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct



### Aim

# Fast and accurate deconvolution of x-ray projection images blurred by source and detector blur.

Increasing scintillator thickness results in higher efficiency but lower spatial resolution



#### Increasing x-ray power results in shorter scans but extended focal spot size



Hamamatsu L10951 Micro-Focus X-ray Source



### **Detector and Source Blur Models**





### **Detector and Source Blur Models**

### **Detector deblurring**

 Image blur caused by the detector can be modeled by a convolution of the ideal projection image with a Gaussian function



### Source deblurring

 Image blur caused by the focal spot size is depth dependent and can neither be modeled nor corrected with a single Gaussian convolution model





### CNN Task

- The aim of CNN deblurring is the restoration of the ideal image information.
- As the ideal image usually is unavailable, a high resolution acquisition can be used as reference



Ideal or HighRes Image



## **CNN Training and Application**

- Modified U-net<sup>1</sup>
- Blurred images were used as input images for the CNN
- High resolution images were used as reference
- Training and application of the CNN was performed in intensity domain
- The CNN was trained for 100 epochs using the Adam optimizer
- Images not included in the training dataset were used for testing



## **U-Net<sup>1</sup> Trained for Deconvolution**

Input:Low resolution imageOutput:High resolution deblurred image



<sup>1</sup>Ronneberger, Fischer, and Brox: "U-net: Convolutional networks for biomedical image segmentation," MICCAI 9351, pp. 234–241, 2015.



### **Reference: RL Deconvolution**

- Richardson-Lucy deconvolution
- Iterative deconvolution using a known point spread function

$$f_j^{(t+1)} = f_j^{(t)} \sum_i \frac{g_i}{\sum_j k_{ij} f_j^{(t)}} k_{ij}$$

 $k_{ij} = \text{point spread function}$  $f_j = \text{estimated signal}$  $g_i = \text{observed signal}$ 

Richardson, W. H. (1972). "Bayesian-Based Iterative Method of Image Restoration". JOSA. 62 (1): 55–59. Lucy, L. B. (1974). "An iterative technique for the rectification of observed distributions". Astronomical Journal. 79 (6): 745–754.



### **Experiments**

- 1. High resolution images blurred with a shift invariant Gaussian filter
- 2. High resolution images blurred with a shift variant filter
- 3. High and low resolution projection images, measured on a table top system
- 4. Forward projections of high resolution micro-CT scans



## **Shift Invariant Blurring**

- Single convolution with a Gaussian kernel was used to generate a large number of blurred images from initial high resolution images
- Representing a detector blur model
- Training dataset of 1925 high resolution projections



## **Shift Invariant Blurring**

- Comparison of CNN to Richardson-Lucy deconvolution
- $\sigma = 2$  pixel

Original Image



**Blurred Image** 



**RL Deblurring** 



**CNN Deblurring** 













## **Shift Invariant Blurring**

- Comparison of CNN to Richardson-Lucy deconvolution
- $\sigma = 2$  pixel

**Original Image** 



**Blurred Image** 

#### **RL Deblurring**



**CNN Deblurring** 









C = 0, W = 0.2



## **Shift Variant Blurring**

- A more general blur model was implemented with a shift variant Gaussian
- Gaussian kernel varied from  $\sigma = 1$  to  $\sigma = 3$  in both directions independently



Ellipses indicate 10 × FWHM of filter kernel



## **Shift Variant Blurring**

- Comparison of CNN to Richardson-Lucy deconvolution
- $1 \le \sigma \le 3$

**Original Image** 



**Blurred Image** 



**RL Deblurring** 



**CNN Deblurring** 













## Shift Variant Blurring Including Simulated Noise

- To evaluate the noise characteristics of the deblurring techniques, noise was added to the original image corresponding to 10.000 photons per ray
- Blurring as well as deblurring was performed on noisy projection images using a shift variant kernel
- Variance images of 100 projections representing identical projection geometry were calculated



### Shift Variant Blurring Including Simulated Noise

- Noisy images, simulated with 10.000 photons per ray
- $1 \le \sigma \le 3$ , var images calculated from 100 realizations



#### **Blurred Image**



#### **RL Deblurring**



#### **CNN Deblurring**















### **Deconvolution with or of Pictures?**

#### **Training data: Cows, Horses, Pigs**



**Testing Data: Squirrels** 





### **Deconvolution with or of Pictures?**

- CNN deconvolution of shift variant and invariant blurred images can be trained and applied to projection images as well as photographs
- Examples from the "animals with attributes 2" dataset





### **Deconvolution with or of Pictures?**

### **Testing**



dkfz.

### Measurements

- Measurements were performed on a table top CT system
- Two series of projections were acquired for various samples
- Small focal spot: 15 µm (4.8 W)
- Large focal spot: 80 µm (48 W)





### **Training on Measured Data**

- CNN was trained on 1095 projections of a mouse
- CNN was applied to a head dataset of another mouse

### Training



### Testing





### **CNN Deblurring with Measured Data**

**CNN** Deblurring Small Focus Large Focus



### **CNN Deblurring with Measured Data**

**CNN** Deblurring Large Focus **Small Focus** 



C = 0, W = 0.25

### **3D Simulations**

- To evaluate the performance of the CNN deconvolution for 3D micro-CT imaging, the forward projection of several high resolution mouse datasets was used.
- The geometry of our experimental micro-CT system is



 $- R_{\rm D} = 500 \, \rm mm$ 





### **3D Simulations**

- 1024 forward projections of one dataset were used for training over 100 epochs
- 1024 forward projections of another mouse dataset were used for testing
- Reconstructions of the deblurred projections were used to evaluate if the CNN deblurring introduces new artifacts into the reconstructed volume



### **3D Reconstructions of Simulated Projections**

**Reference image** 

**Blurred image** 

**CNN deblurred image** 













*C* = 2000 HU, *W* = 4000 HU



### **Discussion & Conclusion**

- CNN deconvolution can be applied to x-ray projection images to increase spatial resolution
- CNN deconvolution performed better than RL reference method
- Our use case is to increase the tube power. Then CNN deblurring may help to reduce the measurement time.
- Training and application of the CNN can be performed without explicit knowledge of the system's PSF.
- Our results, however, are highly preliminary. A thorough performance analysis as well as an adjustment of the network structure and hyperparameters needs to be done.



# Thank You!

### The 6<sup>th</sup> International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org



Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct<sup>®</sup> GmbH, Nürnberg, Germany. This work was supported in parts by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2776/1-1 and by the BMBF within the framework M2OLIE.