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Aim

Fast and accurate deconvolution of x-ray projection 
images blurred by source and detector blur.

Hamamatsu L10951 Micro-Focus X-ray Source

Increasing x-ray power results in

shorter scans 

but extended focal spot size

CsI
4.50 g/cm3

Increasing scintillator thickness 

results in higher efficiency 

but lower spatial resolution
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Detector and Source Blur Models
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Detector and Source Blur Models

Detector deblurring
• Image blur caused by the detector can be modeled 

by a convolution of the ideal projection image with 
a Gaussian function

Source deblurring
• Image blur caused by the focal spot size is depth 

dependent and can neither be modeled nor 
corrected with a single Gaussian convolution 
model
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• The aim of CNN deblurring is the restoration of the 
ideal image information.

• As the ideal image usually is unavailable, a high 
resolution acquisition can be used as reference

CNN Task

Ideal or HighRes Image Acquired Image (LowRes)

Acquisition

Deblurring
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CNN Training and Application

• Modified U-net1

• Blurred images were used as input images for the CNN

• High resolution images were used as reference

• Training and application of the CNN was performed in 
intensity domain

• The CNN was trained for 100 epochs using the Adam 
optimizer

• Images not included in the training dataset were used 
for testing

1Ronneberger, Fischer, and Brox: “U-net: Convolutional networks for
biomedical image segmentation,” MICCAI 9351, pp. 234–241, 2015.
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U-Net1 Trained for Deconvolution

Input Output

3 × 3 Convolution, ReLU

3 × 3 Convolution (stride = 2) 3 × 3 Transposed Convolution (stride = 2)

Depth Concatenate

Input: Low resolution image

Output: High resolution deblurred image

1Ronneberger, Fischer, and Brox: “U-net: Convolutional networks for
biomedical image segmentation,” MICCAI 9351, pp. 234–241, 2015.
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Reference: RL Deconvolution

• Richardson-Lucy deconvolution

• Iterative deconvolution using a known 
point spread function

Richardson, W. H. (1972). "Bayesian-Based Iterative Method of Image Restoration". JOSA. 62 (1): 55–59.

Lucy, L. B. (1974). "An iterative technique for the rectification of observed distributions". Astronomical Journal. 79 (6): 745–754. 
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Experiments

1. High resolution images blurred with a shift 
invariant Gaussian filter

2. High resolution images blurred with a shift 
variant filter

3. High and low resolution projection images, 
measured on a table top system

4. Forward projections of high resolution micro-
CT scans
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Shift Invariant Blurring

* =

• Single convolution with a Gaussian kernel was used 
to generate a large number of blurred images from 
initial high resolution images

• Representing a detector blur model

• Training dataset of 1925 high resolution projections

 = 2 pixel
FWHM = 4.7 pixel
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Shift Invariant Blurring

• Comparison of CNN to Richardson-Lucy deconvolution

• pixel

Original Image Blurred Image RL Deblurring CNN Deblurring
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Shift Invariant Blurring

• Comparison of CNN to Richardson-Lucy deconvolution

• pixel

Original Image Blurred Image RL Deblurring CNN Deblurring

C = 0, W = 0.2

C = 0.5, W = 1
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Shift Variant Blurring

• A more general blur model was implemented with a 
shift variant Gaussian

• Gaussian kernel varied from  = 1 to  = 3 in both
directions independently

Ellipses indicate 10 × FWHM of filter kernel
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Shift Variant Blurring

Original Image Blurred Image RL Deblurring CNN Deblurring

• Comparison of CNN to Richardson-Lucy deconvolution

• 1 ≤  ≤ 3

C = 0, W = 0.1

C = 0.5, W = 1
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Shift Variant Blurring
Including Simulated Noise

• To evaluate the noise characteristics of the 
deblurring techniques, noise was added to the 
original image corresponding to
10.000 photons per ray

• Blurring as well as deblurring was performed on 
noisy projection images using a shift variant kernel

• Variance images of 100 projections representing 
identical projection geometry were calculated
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Shift Variant Blurring
Including Simulated Noise

Original Image Blurred Image RL Deblurring CNN Deblurring

• Noisy images, simulated with 10.000 photons per ray

• 1 ≤  ≤ 3, var images calculated from 100 realizations

C = 10-4, W = 2×10-4

C = 0.5, W =1
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e Variance = 67×10-6 Variance = 1.4×10-6 Variance = 7.0×10-6 Variance = 23×10-6
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Deconvolution with or of Pictures?

Training data: Cows, Horses, Pigs Testing Data:  Squirrels
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Deconvolution with or of Pictures?

• CNN deconvolution of shift variant and invariant  
blurred images can be trained and applied to projection 
images as well as photographs

• Examples from the “animals with attributes 2” dataset

CorrectedInput ImageOriginal Image

Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", 

IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018. 
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Deconvolution with or of Pictures?

Testing
T

ra
in
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g  
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Measurements

sampledetector x-ray tube

• Measurements were performed on a table top CT 
system

• Two series of projections were acquired for various 
samples

• Small focal spot: 15 µm (4.8 W)

• Large focal spot: 80 µm (48 W)
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Training on Measured Data

• CNN was trained on 1095 projections of a mouse

• CNN was applied to a head dataset of another mouse

TestingTraining
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CNN Deblurring with Measured Data

Small Focus Large Focus CNN Deblurring
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CNN Deblurring with Measured Data

Small Focus Large Focus CNN Deblurring

C = 0, W = 0.25

C = 0.5, W = 1
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3D Simulations

• To evaluate the performance of the CNN deconvolution 
for 3D micro-CT imaging, the forward projection of 
several high resolution mouse datasets was used.

• The geometry of our experimental micro-CT system is
– RF = 80 mm

– RD = 500 mm

X-ray tube

Detector
Rotary 

Joint
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3D Simulations

• 1024 forward projections of one dataset were used for 
training over 100 epochs 

• 1024 forward projections of another mouse dataset 
were used for testing

• Reconstructions of the deblurred projections were 
used to evaluate if the CNN deblurring introduces new 
artifacts into the reconstructed volume
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3D Reconstructions of
Simulated Projections

Reference image Blurred image CNN deblurred image

C = 2000 HU, W = 4000 HU
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Discussion & Conclusion

• CNN deconvolution can be applied to x-ray projection 
images to increase spatial resolution

• CNN deconvolution performed better than RL reference 
method

• Our use case is to increase the tube power. Then CNN 
deblurring may help to reduce the measurement time.

• Training and application of the CNN can be performed 
without explicit knowledge of the system’s PSF.

• Our results, however, are highly preliminary. A thorough 
performance analysis as well as an adjustment of the 
network structure and hyperparameters needs to be 
done.



Thank You!

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.
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