Dose Minimization in Material-Selective Clinical CT with Photon-Counting Detectors

Nicole Maaß¹, Stefan Sawall¹, Michael Knaup¹, <u>Marc Kachelrieß^{1,2}</u>

¹ Friedrich-Alexander-University (FAU), Erlangen, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany

To optimize dose usage in energy-selective CT.

Red: Simulated 140 kV spectrum, prefiltered by 2 mm Aluminum and detected by a CdZnTe detector (1.4 mm thickness). Bin 1–4: Normalized spectrum of four (exemplarily) detected energy bins assuming a simple Gaussian spectra blurring with a standard deviation of 15 kV and centered at 35, 65, 95, and 125 keV.

Energy-Selective CT Images

Multiple Energy CT

Assumption: The object consists of M independent materials:

$$\begin{aligned} & \underset{w_{\text{Bin1}}(E)}{w_{\text{Bin2}}(E)} \underbrace{w_{\text{Bin3}}(E)}_{w_{\text{Bin4}}(E)} \underbrace{w_{\text{Bin4}}(E)}_{w_{\text{Bin4}}(E)} \\ & q_1 = -\ln \int dE w_{\text{Bin1}}(E) e^{-p_{\text{Water}}\psi_{\text{Water}}(E) - p_{\text{Mgvst}}\psi_{\text{Mgvst}}(E)} \\ & q_2 = -\ln \int dE w_{\text{Bin2}}(E) e^{-p_{\text{Water}}\psi_{\text{Water}}(E) - p_{\text{Mgvst}}\psi_{\text{Mgvst}}(E)} \\ & q_3 = -\ln \int dE w_{\text{Bin3}}(E) e^{-p_{\text{Water}}\psi_{\text{Water}}(E) - p_{\text{Mgvst}}\psi_{\text{Mgvst}}(E)} \\ & q_4 = -\ln \int dE w_{\text{Bin4}}(E) e^{-p_{\text{Water}}\psi_{\text{Water}}(E) - p_{\text{Mgvst}}\psi_{\text{Mgvst}}(E)} \end{aligned}$$

Material-Selective Multiple Energy CT

Measurement

$$q_{1} = q_{1}(p_{\text{Water}}, p_{\text{Mgvst}})$$
$$q_{2} = q_{2}(p_{\text{Water}}, p_{\text{Mgvst}})$$
$$q_{3} = q_{3}(p_{\text{Water}}, p_{\text{Mgvst}})$$

 $q_4 = q_4(p_{\text{Water}}, p_{\text{Mgvst}})$

Measuring the same object with B different detected spectra yields B different functions of the same material-selective sinograms. We aim to invert those measurements to get the material selective sinograms, whose reconstructions are the material-selective images.

Reconstruction

$$f_{\text{Water}} = \mathsf{X}^{-1} p_{\text{Water}}$$

$$f_{\rm Mgvst} = \mathsf{X}^{-1} p_{\rm Mgvst}$$

$$p_{\text{Water}} = p_1(q_1, q_2, q_3, q_4)$$
$$p_{\text{Mgvst}} = p_2(q_1, q_2, q_3, q_4)$$

Empirical Methods

No knowledge required:

Detected Spectra

• Instead: Direct calibration of the inversion formula Material-selective $\gg p_m(q_1, q_2, ..., q_B)$

sinogram		Measurements		
ECC	Empirical cupping correction	[MedPhys 33:1269, 2006]		
ECCU	ECC with tube voltage modulation	[PMB 55:4107, 2010]		
EDEC	Empirical dual energy calibration	[MedPhys 34:3630, 2007]		
EMEC	Empirical multiple energy calibration	[Medical Imaging Conference MIC21.S-177, 2011], [RSNA, SSJ21-05, 2011]		

EMEC Series Expansion

 Empirical multiple energy calibration (EMEC) uses the series expansion

$$p_m(q_1, q_2, \dots, q_B) = \sum_{k_1, k_2, \dots, k_B} c_{m, k_1, k_2, \dots, k_B} q_1^{k_1} q_2^{k_2} \dots q_B^{k_B}$$

to obtain material–selective intersection lengths p_m from polychromatic measurements q_b .

- The unknowns $c_{m,k_1,k_2,...,k_B}$ are calculated from a calibration scan according.

Different Ways of EMEC

Number of detected spectra

Number of materials

• For B > M redundant ways to calculate p_m exist.

$$p_{m,w}(q_1, q_2, \dots, q_B) = \sum_{k_1, k_2, \dots, k_B} c_{m,w,k_1, k_2, \dots, k_B} q_1^{k_1} q_2^{k_2} \dots q_B^{k_B}$$

Binary notation

1100 means: $p_{\text{Water}} = p_1(q_1, q_2)$ $p_{\text{Mgvst}} = p_2(q_1, q_2)$

$$f_{m,1100}(\boldsymbol{r}) = \sum_{k_1,k_2} c_{m,1100,k_1,k_2,0,0} \cdot f_{k_1,k_2,0,0}(\boldsymbol{r})$$

Calibration using the Yin Yang Phantom

W	Bin 1	Bin 2	Bin 3	Bin 4	$D^2_{\rm Water}$	D ² Magnevist
1100	Х	Х	0	0	14.3	4.4
1010	Х	0	Х	0	12478	6109
0110	0	Х	Х	0	2.6	1.8
1001	Х	0	0	Х	3.7	2.1
0101	0	Х	0	Х	1.5	1.3
0011	0	0	Х	Х	0.9	0.9

Way 1010 is expected to fail in doing the material separation. EMEC automatically finds that the spectral spearation is too low using that way.

$$f_{m,w}(\mathbf{r}) = \sum_{k_1,k_2,...,k_B} c_{m,w,k_1,k_2,...,k_B} f_{k_1,k_2,...,k_B} (\mathbf{r})$$
$$D_{m,w}^2 = \int d^3 \mathbf{r} g(\mathbf{r}) (f_{m,w}(\mathbf{r}) - t_m(\mathbf{r}))^2$$

Dose Minimization (I)

 Combine all redundant ways w to one material– selective rawdata set:

We use a noise model for each measured sinogram bin q_b . Hence, error propagation can be used to calculate the variance of p_m . Recall that $p_{m,w}$ is just a series expansion and thus error propagation is an easy task.

Dose Minimization (II)

Solving	$\min_{h_{m,w}} \operatorname{Var} p_m$	We minimize the variance of eac material-selective sinogram pixel p separately on-the-fly Since all p hay			
yields	$h_{m,w}$	the same value up to the noise, we may use completely different $h_{m,w}$ values for			
and thus	$p_m = \sum h_{m,n}$	each sinogram entry. $_w p_{m,w}$			
minimizes the	w	matorial coloctivo cinogram			

minimizes the pixel noise in the material-selective shogram.

Reconstruction yields the material-selective images: •

$$f_{\text{Water}} = \mathsf{X}^{-1} p_{\text{Water}}$$
$$f_{\text{Mgvst}} = \mathsf{X}^{-1} p_{\text{Mgvst}}$$

m '**e**

Simulations

Calibration

Analytical 2D simulation

- fan-beam geometry
- 512 projections, 512 rays per projection
- Poisson noise model Var q_b

Yin Yang Phantom

- Tucker spectrum
 - 140 kV
 - 2 mm Al prefiltration
 - 1.6 mm CdZnTe detectors

Way 1010 was found to be inappropriate by the EMEC calibration (above) and is therefore excluded in the following consideration.

Application Phantom Results

Different Ways of EMEC

Summary

- Energy-selective CT systems offer redundant ways to reconstruct material-selective CT images.
 - Here we used EMEC^{*} (empirical multiple energy calibration) to calibrate each way.
- Dose Minimization
 - Combines redundant ways for minimal noise
 - Patient specific, sinogram-pixel specific
 - Reduces image noise by ~25% with respect to the best single way

Thank You!

This work was supported in parts by the Deutsche Forschungsgemeinschaft (DFG) under the grants KA 1678/2-2 and KA 1678/5-1 and by the AiF under grant KF2336201FO9.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

