Dual- and Multi-Energy CT Physical Background and Concepts

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Clarification of Terminology

Dual energy CT (DECT)

- Simultaneous measurement with two different detected spectra
- Various different technical realizations
- Multi energy CT (MECT)
 - Simultaneous measurement with three or more detected spectra
 - Currently only realized in (experimental) photon counting CT
- Spectral CT
 - CT exploiting the different x-ray spectral behaviour of materials
 - Everything above, i.e. DECT and MECT

Energy-integrating or conventional CT

- CT with conventional indirectly converting detectors
- Can realize DECT

Photon-counting CT

- CT with novel directly converting energy-selective detectors
- Can realize DECT and MECT

Emitted spectrum = x-ray spectrum as it leaves the x-ray source and prefilters Detected spectrum = x-ray spectrum as it is seen by the detector

The X-ray attenuation coefficients of different materials vary widely with energy. This is the reason why beamhardening effects cannot be controlled completely. But it also forms the basis for material-selective imaging by dual energy methods.

Kalender WA et al. Radiology 164:419-423, 1987

80 kV

dkfz.

8.45

7.55

3.49

1.94

C = 50 HU, W = 600 HU

DE bone removal

Virtual non-contrast and iodine image

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6 mm

Courtesy of Friedrich-Alexander University Erlangen-Nürnberg

"Spectroscopy": more specific tissue characterization → Detection and visualization of calcium, iron, uric acid, ……

Linear Mixing $f_{\alpha} = (1 - \alpha) f_{\rm L} + \alpha f_{\rm H}$

$\alpha = 0$

C.

C = 300 HU, W = 1400 HU

Gout

Rho/Z

Xenon*

Monoenergetic Plus

Optimum Contrast

Monoenergetic

Heart PBV

Lung Nodules*

Calculi Characterization

Brain Hemorrhage

Direct Angio

Virtual Unenhanced

Bone Marrow

Musculoskeletal*

Lung Analysis

Syngo.CT DECT application examples. Virtual unenhanced contains liver VNC, lung analysis contains lung PBV. Courtesy of Siemens Healthineers, Forchheim, Germany

• In the clinic:

- Multiple scans at different spectra
- Dual source CT (DSCT), generations 2, and 3
- Fast tube voltage switching
- Dual layer sandwich detectors
- Split filter
- First prototypes:

Photon counting detectors (two or more energy bins) high-end

• DECT approaches in the clinic: – Dual source DECT (Siemens)

Effect of the Prefilter: Without Sn

Effect of the Prefilter: With 0.4 mm Sn

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)

DECT approaches in the clinic:

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)
- Dual layer (sandwich) detector (Philips)

for the bottom layer.

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)
- Dual layer (sandwich) detector (Philips)
- Split filter (Siemens)

80 kV / 140 kV

80 kV / 140 kV Sinrect kV-Switching

80 kV / 140 kV Sn_{0.4 mm}

90 kV / 150 kV Sn_{0.6 mm}

140 kV YAG / GOS

Split filter 120 kV (Au+Sn)

Premium CT Systems 2019/2020

Vendor	CT-System	Configuration	Collim, Cone	Rotation, FOM	Max. Power, Anode Angle	Max. mA @ low kV, patient-specific filters	Matrix	DECT
Canon	Aquilion ONE Genesis	320 × 0.5 mm PUREViSION	160 mm, 15°	0.275 s, 50 cm	100 kW, 10° MegaCool Vi	600 mA @ 80 kV, none	512	2 scans
Canon	Aquilion Precision	160 × 0.25 mm PUREViSION	40 mm, 3.9°	0.35 s, 50 cm	72 kW, 7° MegaCool	600 mA @ 80 kV, none	512, 1024, 2048	2 scans
GE	Revolution Apex	256 × 0.625 mm GemStone Clarity	160 mm, 15°	0.28 s, 50 cm	108 kW, 10° Quantix 160	1300 mA @ 70+80 kV, none	512	fast TVS or 2 scans
GE	CardioGraphe	192 × 0.73 mm (focused FOM)	140 mm, 17°	0.24 s, 25 cm	72 kW, 13° Dual MCS-2093	600 mA @ 80 kV, none	512	2 scans
Philips	Brilliance iCT	2 · 128 × 0.625 mm NanoPanel 3D	80 mm, 7.7°	0.27 s, 50 cm	120 kW, 8° iMRC	925 mA @ 80 kV, none	512, 768, 1024	2 scans
Philips	IQon	2 · 64 × 0.625 mm NanoPanel Prism	40 mm, 3.9°	0.27 s, 50 cm	120 kW, 8° iMRC	925 mA @ 80 kV, none	512, 768, 1024	sandwich
Siemens	Somatom X.cite	2 · 64 × 0.6 mm Stellar	38.4 mm, 3.7°	0.3 s, 50 cm	105 kW, 8° Vectron	1200 mA @ 70+80+90 kV, {0, 0.4, 0.7} mm Sn	512, 768, 1024	split filter or 2 scans
Siemens	Somatom Force	2 · 2 · 96 × 0.6 mm Stellar	57.6 mm, 5.5°	0.25 s, 50/36 cm	2 · 120 kW, 8° Vectron	2 · 1300 mA @ 70+80+ 90 kV, {0, 0.6} mm Sn	512, 768, 1024	DSCT
Siemens experimental	Somatom CounT	32×0.5/24×0.25 mm (photon counting)	16 mm, 1.5°	0.5 s, 50/28 cm	77 kW, 7° Straton MX P	500 mA @ 70 kV {0, 0.4} mm Sn	512, 768, 1024, 2048	4 bin PC

Photon Counting

Photon counting (here: Dectris detector), C/W=1 cnts/2 cnts

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

dkfz.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

Ideally, bin spectra do not overlap, ...

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

... realistically, however they do!

K-Edges: More than Dual Energy CT? $\mu(\boldsymbol{r}, E) = f_1(\boldsymbol{r})\psi_1(E) + f_2(\boldsymbol{r})\psi_2(E) + f_3(\boldsymbol{r})\psi_3(E) + \dots$

lodine k-edge imaging of the breast

Gray curves: 120 kV water transmission on a non-logarithmic ordinate individually normalized to 1 at 140 keV.

Siemens CounT CT System

Gantry from a clinical dual source scanner A: conventional CT detector (50.0 cm FOV) B: Photon counting detector (27.5 cm FOV)

Readout Modes of the CounT

PC-UHR Mode 0.25 mm pixel size

PC-Macro Mode 0.50 mm pixel size **El detector** 0.60 mm pixel size

dkfz.

Advantages of Photon Counting CT

- No reflective gaps between detector pixels
 - Higher geometrical efficiency
 - Less dose
- No electronic noise
 - Less dose for infants
 - Less noise for obese patients
- Counting
 - Swank factor = 1 = maximal
 - "lodine effect" due to higher weights on low energies
- Energy bin weighting
 - Lower dose/noise
 - Improved iodine CNR
- Smaller pixels (to avoid pileup)
 - Higher spatial resolution
 - "Small pixel effect" i.e. lower dose/noise at conventional resolution
- Spectral information on demand
 - Dual Energy CT (DECT)
 - Multi Energy CT (MECT)

Energy Integrating (Detected Spectra at 100 kV and 140 kV)

0 keV 33 keV 100 keV 140 keV lodine k-edge $\text{Signal}_{\text{EI}} = \int dE \, E \, N(E)$

Photon Counting (Detected Spectra at 100 kV and 140 kV)

Spectra as seen after having passed a 32 cm water layer.

dkfz.

Photon Counting used to Maximize CNR

- With PC energy bin sinograms can be weighted individually, i.e. by a weighted summation
- To optimize the CNR the optimal bin weighting factor w_b is given by (weighting after log):

• The resulting CNR is

$$CNR^2 = \frac{\left(\sum_b w_b C_b\right)^2}{\sum_b w_b^2 V_b}$$

 $w_b \propto \frac{C_b}{V_b}$

• At the optimum this evaluates to $CNR^{2} = \sum_{b=1}^{B} CNR_{b}^{2}$

The two ROIs are used to measure the CNR.

Energy Integrating vs. Photon Counting with 4 bins from 20 to 140 keV

Energy Integrating

PC minus **EI**

Photon Counting

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV

The "Small Dival Effect"

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

All images reconstructed with 1024² matrix and 0.15 mm slice increment. *C* = 1000 HU *W* = 3500 HU

Data courtesy of the Institute of Forensic Medicine of the University of Heidelberg and of the Division of Radiology of the German Cancer Research Center (DKFZ)

PC-UHR, U80f, 0.25 mm slice thickness

± 214 HU

PC-UHR, U80f, 0.75 mm slice thickness

± 131 HU

PC-UHR, B80f, 0.75 mm slice thickness

± 53 HU

El, B80f, 0.75 mm slice thickness

± 75 HU

10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.40 mm CTDI_{vol}: 16.0 mGy

10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

dkfz.

L. Klein, C. Amato, S. Heinze, M. Uhrig, H.-P. Schlemmer, M. Kachelrieß, and S. Sawall. Effects of Detector Sampling on Noise Reduction in a Clinical Photon Counting Whole-Body CT. Investigative Radiology, vol. 55(2):111-119, February 2020.

Energy Integrating Detector (B70f)

Acquisition with EI:

- Tube voltage of 120 kV
- Tube current of 300 mAs
- Resulting dose of CTDI_{vol 32 cm} = 22.6 mGy

t 94 HU C 9

Photon Counting Detector (B70f)

Acquisition with UHR:

- Tube voltage of 120 kV
- Tube current of 180 mAs
- Resulting dose of CTDI_{vol 32 cm} = 14.6 mGy

C = 50 HU, W = 1500 HU

X-Ray Dose Reduction of B70f

	UHR vs. Macro	80 kV	100 kV	120 kV	140 kV
PC VS ("pixel eff	S. PC S	23% ± 12%	34% ± 10%	35% ± 11%	25% ± 10%
	ffect only / M	32% ± 10%	32% ± 8%	35% ± 8%	34% ± 9%
	L	35% ± 10%	29% ± 15%	27% ± 9%	31% ± 11%
		00 101	400 1/1/	100 k)/	4.40 1-37
	UHR VS. EI	80 KV	100 KV	120 KV	140 KV
PC	S.E. S	33% ± 9%	52% ± 5%	57% ± 7%	57% ± 6%
("pixel e "iodir	ne effect") M	41% ± 8%	47% ± 7%	60% ± 6%	62% ± 4%
	L	48% ± 8%	43% ± 10%	54% ± 6%	63% ± 5%
	Noise	B70f		PC-UHR Mode 0.25 mm pixel size 0.50 mm pixel s	ode El detector 0.60 mm pixel size
					Resolution

Klein, Kachelrieß, Sawall et al. Invest. Radiol. 55(2), Feb 2020

dkfz.

Summary

Dual energy CT

- Several realizations of dual energy CT available
- DECT does not necessarily increase or decrease dose although two simultaneous acquisitions are performed
- Dose in DECT is partitioned into the low and the high kV scan

Photon-counting multi energy CT

- Intrinisically performs energy-selective acquisition
- Separation of more materials difficult would require development of novel contrast agents
- Significantly higher spatial resolution
- Significantly higher dose efficiency due to basic physic principles

Thank You!

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

