Dual Energy CT (DECT) and beyond

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Simulation with conventional spectra (no additional prefiltration) to emphasize artifacts.

Dual-Source-CT (since 2005)

Siemens SOMATOM Force 3rd generation dual source cone-beam spiral CT

Courtesy of Stephan Achenbach

Turbo Flash, 70 kV, 0.55 mSv 63 ms temporal resolution 143 ms scan time

Single DECT

Scan

DE bone removal

Virtual non-contrast and lodine image

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6mm

Courtesy of Friedrich-Alexander University Erlangen-Nürnberg

DECT Today: Widely Available via DSCT

(Slide Courtesy of Siemens Healthcare)

- New approach: Detection, visualization and quantification of iodine
 - \rightarrow Characterization of perfusion defects in the myocardium
 - \rightarrow Hemodynamic relevance of coronary artery stenosis:

Coronary CTA = morphology, local blood volume = function

Courtesy of MUSC, Charleston, USA

Monoenergetic Imaging (mono+ = noise reduction with frequency split)

Dual Energy Monoenergetic Plus E = 170 keV

Courtesy of Prof. Michael Lell, Friedrich-Alexander University Erlangen-Nürnberg

Dual Energy Metal Artifact Reduction (linear combination plus noise reduction with mono+)

80 keV

160 keV

Courtesy of Prof. Michael Lell, Friedrich-Alexander University Erlangen-Nürnberg

¹Iterative metal artifact reduction (iMAR) is the Siemens product implementation of FSNMAR. ²Frequency split normalized metal artifact reduction: Meyer, Kachelrieß. MedPhys 39(4), 2012.

DECT Today: Widely Available via DSCT

(Slide Courtesy of Siemens Healthcare)

"Spectroscopy": more specific tissue characterization
 → Detection and visualization of calcium, iron, uric acid,

Image-Based Classification of Materials

• In the clinic:

- Multiple scans at different spectra
- Dual source CT (DSCT), generations 2, and 3
- Fast tube voltage switching
- Dual layer sandwich detectors
- Split filter
- First prototypes:
 - Photon counting detectors (two or more energy bins) high-end?

mid-range high-end high-end high-end mid-range

• DECT approaches in the clinic:

- Dual source DECT (Siemens)

Effect of the Prefilter: Without Sn

Effect of the Prefilter: With 0.4 mm Sn

• DECT approaches in the clinic:

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)

• DECT approaches in the clinic:

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)
- Dual layer (sandwich) detector (Philips)

Philips IQon

• DECT approaches in the clinic:

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)
- Dual layer (sandwich) detector (Philips)
- Split filter (Siemens)

Sn

Au

Α

• DECT approaches in the clinic:

- Dual source DECT (Siemens)
- Fast tube voltage switching (GE)
- Dual layer (sandwich) detector (Philips)
- Split filter (Siemens)
- First prototype systems
 - Photon counting detector, multiple energy bins

2014-2016	Configuration	Collimation	Rotation	DECT
GE Revolution	256 × 0.625 mm	160 mm	0.28 s	fast TVS
Philips Brilliance iCT	2·128 × 0.625 mm	80 mm	0.27 s	2 scans
Philips IQon	2·64 × 0.625 mm	40 mm	0.27 s	sandwich
Siemens Definition Edge	2·64 × 0.6 mm	38.4 mm	0.28 s	split filter
Siemens Definition Flash	2·2·64 × 0.6 mm	38.4 mm	0.28 s	DSCT
Siemens Force	2·2·96 × 0.6 mm	57.6 mm	0.25 s	DSCT
Siemens PC Prototype	28 × 0.5 mm	14 mm	1.00 s	PC
Toshiba Acquil. ONE Vision	320 × 0.5 mm	160 mm	0.275 s	2 scans

MK3 Siemens: 2*1160 in 0.5 s Philips iCT: (2400 readings / rotation) / (0.27 seconds / rotation) = 8.889 kHz Thoshiba: "Sampling rate is 2.6 KHz. ", Mike Silver, Mail of 20.5.2012 Prof. Dr. Marc Kachelrieß; 21.05.2012

80 kV / 140 kV Sinrect kV-Switching

80 kV / 140 kV Sn_{0.4 mm}

90 kV / 150 kV Sn_{0.6 mm}

140 kV YAG / GOS

Decomposition Increases Noise

C = 0 HU, W = 700 HU

Denoising is Mandatory!

More than Dual Energy?

- Ways to remove the spectral overlap?
- Lower noise, less dose?
- Improve contrast-to-noise ratio at unit dose?
- Distinguish more than three materials?

$$\begin{split} \mu(E) &= p(E) + \tau(E) + \sigma(E) + \kappa(E) \\ \text{Rayleigh Photo Compton Pair} \\ \tau(E) \propto \rho \frac{Z^3}{E^3} \\ \sigma(E) \propto \rho \frac{Z}{A} f(E) \end{split}$$

K-Edges: More than Dual Energy CT? $\mu(\boldsymbol{r}, E) = f_1(\boldsymbol{r})\psi_1(E) + f_2(\boldsymbol{r})\psi_2(E) + f_3(\boldsymbol{r})\psi_3(E) + \dots$ Apart from special applications, e.g.

120 kV water transmission curves (gray) given in relative units on a non-logarithmic ordinate.

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

Diagnostic CT (Conventional Detector) of a Low Contrast Phantom

Diagnostic routine head protocol. 34 mGy CTDI_{vol}.

Photon Counting Detector CT of a Low Contrast Phantom

Same dose. Same spatial resolution (MTF). Better image quality.

C = 0 HU, W = 80 HU

Future, Photon Counting (≥ 2020)?

1 16 n	×2 re nm z-	adou cove	its erage	2 16 I
12	12	12	12	12
12	12	12	12	34
12	12	12	12	12
12	12	12	12	34

Macro Mode

Chess Mode 2×2 readouts mm z-coverage

12

12

12

12

12

12

12 m	nm z-		erag
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Sharp Mode

5.1 roadoute

e

UHR Mode 4×2 readouts 8 mm z-coverage

12	12	12	12
12	12	12	12
12	12	12	12
12	12	12	12

2	2	2	2
2	2	2	2
2	2	2	2
2	2	2	2

- 4×4 225 µm subpixels
- 0.9 mm macro pixels
- Configurations:
 - Macro (0.5 mm iso)
 - Chess (0.5 mm iso)
 - Sharp (0.25 mm iso)
 - UHR (0.25 mm iso)

Siemens Somatom CounT. No FFS on thread B (photon counting detector). The whole detector consists of 128×1920 subpixels = 32×480 macro pixels.

MECT

Ca-Gd-I Decomposition

Chess pattern mode 140 kV, 20/35/50/65 keV *C* = 0 HU, *W* = 1200 HU

Calcium image Cadolinium image Iodine image Image: Image:

Courtesy of Siemens Healthcare

Preclinical Study (40 kg swine, iodine contrast)

First Peer Reviewed Publication on CounT from NIH February 2016

Courtesy of National Institutes of Health, Berthesda, USA

Pourmorteza A et al., Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience. Radiology. 2016 Apr;279(1):239-45

Electronic Noise

- Photon counting detectors have no electronic noise.
- Extreme low dose situations will benefit
 - Pediadric scans at even lower dose
 - Obese patients with less noise
 - ...

Swank Factor

- The Swank factor measures the relative SNR², and thus the relative dose efficiency between photon counting (PC) and energy integrating (EI).
- El always has the lower SNR.

Photon Counting used to Maximize CNR with 1 bin from 20 to 140 keV

Energy Integrating

PC minus El **Photon Counting**

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU W = 350 HU, bins start at 20 keV

Photon Counting used to Maximize CNRwith 4 bins from 20 to 140 keV

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU W = 350 HU, bins start at 20 keV

Spatial Resolution to Avoid Pileup

- Small electrodes are necessary to avoid pile-up.
- High bias voltages (around 300 V) limit charge diffusion and thus blurring in the non-structured semiconductor layer.
- Thus, higher spatial resolution is achievable.

Ultra-High Resolution on Demand

Energy Integrating CT (Somatom Flash)

Photon Counting CT (Somatom Count. UHR-Mode)

Courtesy of Cynthia McCollough, Mayo Clinic, Rochester, USA.

Kachelrieß and Kalender. MedPhys 32(5):1321-1334, May 2005.

Potential Advantages of Photon Counting Detectors in CT

- Higher spatial resolution due to
 - smaller pixels
 - lower cross-talk between pixels
- Lower dose/noise due to
 - energy bin weighting
 - no electronic noise
 - Swank factor = 1
 - smaller pixels

Spectral information on demand

- single energy
- dual energy
- multiple energy
- virtual monochromatic
- K-edge imaging

Potential clinical impact

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs www.dkfz.de, or through Marc Kachelrieß marc.kachelriess@dkfz.de. Parts of the simulation and reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany, www.rayconstruct.de.

This presentation will soon be available at www.dkfz.de/ct.

Thank You