Monochromatic Imaging in Dual Energy CT (DECT): Metal Artifact Reduction with Acceptable Image Quality?

Stefan Kuchenbecker¹, Sebastian Faby¹, Sören Schüller¹, Michael Lell², and <u>Marc Kachelrieß^{1,3}</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Universitätsklinikum, Erlangen, Germany ³Friedrich-Alexander-University (FAU), Erlangen, Germany

Monochromatic Imaging

• Pseudo monochromatic imaging $f_{\alpha} = (1 - \alpha) f_{\rm L} + \alpha f_{\rm H}$

- Image-based postprocessing
- Provided in clinical DECT scanners
- Virtual monochromatic imaging $g_{\alpha} = (1 \alpha) g_{L} + \alpha g_{H}$
 - Rawdata-based preprocessing
 - Constraint on consistent rawdata
- True monochromatic imaging
 - Would require monochromatic x-rays not applicable here

$$q_{\rm L} = -\ln \int dE \, w_{\rm L}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$$
$$q_{\rm H} = -\ln \int dE \, w_{\rm H}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E)$$

Series Expansion

Series expansion of the polychromatic attenuation:

$$q_{j} = -\ln \int dE \, w_{j}(E) \, e^{-p_{\rm W} \mu_{\rm W}(E)} - p_{\rm B} \mu_{\rm B}(E) = \sum_{kl} c_{jkl} p_{\rm W}^{k} p_{\rm B}^{l}$$

pseudo monochromatic virtual monochromatic image-based processing rawdata-based processing

Patient Data Set – Pseudo Monochromatic Imaging

 $f_{\rm L} = f_0$ (E = 67 keV)

 $f_{\rm H} = f_1$ (E = 93 keV)

 $f_{1.50}$ (E = 140 keV)

f_{1.90} (*E* = --- keV)

Conclusion

- Pseudo monochromatic imaging
 - cannot completely remove metal artifacts,
 - can sometimes reduce metal artifacts,
 - reduces CNR, if used for metal artifact reduction.
- Rawdata-based DECT decomposition is to be preferred.
- Rawdata-based MAR methods such as FSNMAR^{1,2} should be preferred.
- The additional information available in DECT should be used for spectral imaging rather than for artifact reduction.

¹E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, October 2010. ²E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.

Thank You!

This study was supported by the Deutsche Forschungsgemeinschaft under grants KA 1678/5-1 and LE 2763/1-1. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany. This presentation will soon be available at www.dkfz.de/ct.