May Denoising Remove Structures? How to Reconstruct Invariances of CT Denoising Algorithms

> Elias Eulig^{1,2}, Joscha Maier¹, Björn Ommer³, and Marc Kachelrieß^{1,4}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Faculty of Physics and Astronomy, Heidelberg University, Germany ³LMU Munich, Germany ⁴Medical Faculty, Heidelberg University, Germany

Motivation

Deep neural networks (DNNs) are powerful tools to reduce artifacts caused by

 Motion Metal

.....

- Scatter
- Noise

Networks have to be invariant in order to model non-injectivity of the data

 Invariances come from non-injective layers, e.g., max-pooling, ReLU

Aim: Reconstruct those invariances

Introduction Deep Learning-Based CT Image Denoising

Supervised in projection domain:

$$\varphi^* = \underset{\varphi}{\operatorname{arg\,min}} \mathbb{E}_{p',p\sim\mathcal{D}^{\operatorname{train}}} \|g_{\varphi}(p') - p\|$$

 p^\prime : low dose projections p : high dose projections

• Supervised in image domain:

$$\theta^* = \operatorname*{arg\,min}_{\theta} \mathbb{E}_{x',x \sim \mathcal{D}^{\mathrm{train}}} \| f_{\theta}(x') - x \|$$

x' : low dose images x : high dose images

Supervised dual domain:

$$\theta^*, \varphi^* = \underset{\theta, \varphi}{\operatorname{arg\,min}} \mathbb{E}_{p', p \sim \mathcal{D}^{\operatorname{train}}} \| g_{\varphi}(p') - p \| + \| f_{\theta}(\mathbf{X}^{-1}g_{\varphi}(p')) - \mathbf{X}^{-1}p \|$$

Introduction Deep Learning-Based CT Image Denoising

Most work on improving f_{θ} focused on finding better

- **1.** distance functions $\|\cdot\|$
- 2. architectures
- 3. training schemes

In particular, training f_{θ} as GAN with $\|\cdot\|$ being an adversarial loss leads to visually impressive results²

¹Chen, Hu, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. 2017. "Low-Dose CT via Convolutional Neural Network." Biomedical Optics Express 8 (2): 679–94. ²Yang, Qingsong, [...], Ge Wang. 2018. "Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss." IEEE TMI 37 (6): 1348–57.

Introduction Invariances of DNNs

- Rombach et al.¹ reconstructed invariances of classifiers.
- Was later adapted to reconstruct invariances of DNNs for CT image denoising.²
- Idea: Learn complete data representation using VAE. Disentangle what the network learned and what it ignores using cINN.
- Problem: VAE may introduce invariances (bottom)

¹Rombach, Robin, Patrick Esser, and Björn Ommer. "Making sense of CNNs: Interpreting deep representations and their invariances with INNs", ECCV, 2020. ²Eulig, Elias, Björn Ommer, and Marc Kachelrieß. "Reconstructing Invariances of CT Image Denoising Networks Using Invertible Neural Networks." CT Meeting, 2020.

Introduction Adversarial Attacks

DNNs are vulnerable to adversarial examples Example: Image classification:

Given: Classifier c_{ϕ} Input image xTrue class: $y \in \{1, ..., k\}$ (Target class: $\tilde{y} \in \{1, ..., k\}, \tilde{y} \neq y$)

Untargeted:	$\arg\min_{x^{\mathrm{adv}}} \left\{ \ x - x^{\mathrm{adv}}\ : c_{\phi}(x^{\mathrm{adv}}) \neq y \right\}$
Targeted:	$\underset{x^{\mathrm{adv}}}{\operatorname{argmin}} \left\{ \ x - x^{\mathrm{adv}}\ : c_{\phi}(x^{\mathrm{adv}}) = \tilde{y} \right\}$

 ${\mathcal X}$: Input image

y : Target label

¹Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., & Fischer, V. (2017). Universal adversarial perturbations against semantic image segmentation. In *ICCV*. ²Chen, Pin-Yu, [...], Cho-Jui Hsieh. 2017. "ZOO: Zeroth Order Optimization Based Black-Box [...]" In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 15–26. AISec '17

Introduction Adversarial Attacks

Finding adversarial perturbations

Fast gradient sign method (FGSM)

If network was trained with loss function \mathcal{L} (e.g., cross-entropy), we can backpropagate to x

 $x^{\mathrm{adv}} = x + \epsilon \operatorname{sign}\left(\nabla_x \mathcal{L}(x, y)\right)$

Basic iterative method (BIM) Apply FGSM iteratively

 $x_0^{\text{adv}} = x$ $x_{i+1}^{\text{adv}} = \text{Clip}_{x,\epsilon} \left\{ x_i^{\text{adv}} + \alpha \operatorname{sign} \left(\nabla_x \mathcal{L}(x_i^{\text{adv}}, y) \right) \right\}$

y : Target label

¹Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., & Fischer, V. (2017). Universal adversarial perturbations against semantic image segmentation. In *ICCV*. ²Chen, Pin-Yu, [...], Cho-Jui Hsieh. 2017. "ZOO: Zeroth Order Optimization Based Black-Box [...]" In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 15–26. AISec '17

Full Dose

Low dose CT image and projection dataset¹

- 50 {head, chest, abdomen} scans
- **Reconstructions of size 512×512 px** •
- Acquired with SOMATOM Definition Flash •
- For each scan, simulated low dose acquisitions are available • (25% dose for abdomen/head, 10% for chest)

Use weighted sampling scheme, such that slices from each patient were sampled with equal probability

CNN-10¹:

- Simple 3-layer CNN
- Trained to with \mathcal{L}_2 loss

WGAN-VGG²:

- 8-layer CNN as generator
- Trained as Wasserstein GAN (WGAN)
- Additional perceptual loss using ImageNet-pretrained VGG

Gaussian filter with rectangular invariances (Gauss + RI)

- Gaussian filter with unit standard deviation
- Returns zero for all pixels inside a center 30×30 px square

¹H. Chen et al., "Low-dose CT denoising with convolutional neural network", ISBI 2017, 2017. ²Q. Yang *et al.*, "Low-Dose CT Image Denoising Using a Generative Adversarial Network [...]", in *IEEE TMI*, vol. 37, no. 6, 2018.

dkfz.

Methods Reconstructing Invariances

Adversarial perturbations Small perturbations in the input that lead to large alterations in predictions

Invariances Large perturbations in the input that leave network predictions unaffected

Find invariances x^{inv} via

$$\underset{x^{\text{inv}}}{\arg\min} \left(\|f_{\theta}(x) - f_{\theta}(x^{\text{inv}})\| - \alpha \|x - x^{\text{inv}}\| \right)$$

In our experiments we use for $\|\cdot\|$:

- Mean-squared-error (MSE), bounded by +1
- Structural dissimilarity: (1 SSIM)/2
- Perceptual loss using ImageNet-pretrained VGG16

Optimize x^{inv} using Adam optimizer for 3k iterations

 $\alpha \in \mathbb{R}^+$ $x_0^{\text{inv}} = x + n$ $n \sim \mathcal{N}(0, 10^{-2})$

Results CNN-10

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU.

Results **CNN-10**

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU. Differences: C = 0 HU, W = 100 HU.

Results WGAN-VGG

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU.

Results WGAN-VGG

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU. Differences: C = 0 HU, W = 100 HU.

Results Gaussian + RI

dkfz.

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU.

Results Gaussian + RI

Lung: C = -600 HU, W = 1500 HU. Abdomen: C = 50 HU, W = 400 HU. Differences: C = 0 HU, W = 100 HU.

Methods Generate natural x^{inv}

Drawbacks of previous approach

- Generated x^{inv} generally do not lie on the data manifold of low dose images $p_{x^{inv}} \neq p_x$
- Sampling new invariances requires new x_0^{inv}

Natural invariances

Generate natural (on-manifold) $x^{\rm inv}$ by training a conditional generator $g_{\phi}(z \sim \mathcal{N}(0,1)|x)$ together with a critic C

 $\arg\min_{\phi} \left\{ \left\| f_{\theta}(x) - f_{\theta}(g_{\phi}(z|x)) \right\| - \alpha \left\| x - g_{\phi}(z|x) \right\| + \beta C(g_{\phi}(z|x)) \right\}$

• Train on 80×80 px patches

$d_i(x)$: Downsampling at stage i

Results CNN-10

Summary & Conclusions

Image-domain optimization

- The presented approach can generate perturbations to which common DNNs for CT image denoising are invariant.
- Magnitude of invariances is dependent on network structure and training scheme.

Adversarial training scheme

- To ensure natural (on-manifold) perturbations, we need to introduce an adversarial training scheme.
- Preliminary results indicate that natural perturbations mostly alter noise structure and much less the anatomical structure.

Thank You!

- This work was supported in part by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany.
- This presentation will soon be available at www.dkfz.de/ct.
- Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

The 8th International Conference on Image Formation in X-Ray Computed Tomography

August 5 – August 9, 2024, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

