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Motivation

• Deep learning methods are employed for many 
problems in medical image formation, e.g.

– Reconstruction

– Scatter estimation

– Image-based noise reduction

• Results of DNN-based methods often excel 
those of conventional algorithms qualitatively 
and quantitatively

• They lack interpretability due to black-box 
nature of DNNs → recent advancement in 
generative modelling signal false confidence

Here: 

• Not focusing on denoising performance

• Lay fundamentals for post-hoc interpretability 
and robustness analysis of denoising DNNs

• Investigate what networks learned to represent 
and to ignore → Their invariances

Full-dose reconstruction Quarter-dose reconstruction

CNN trained with MSE CNN trained as WGAN 
with VGG Loss

Examples for Low-dose CT denoising1

1Q. Yang et al. (2018). Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein […]. IEEE TMI.
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Deep learning-based CT denoising methods aim to find a function
(realized by a CNN with parameters   ), s.t.

where    is the low dose input image and    is the high dose target image.

Recover invariances of two denoising methods:

• Chen et al.1:
– Simple 3-layer CNN 

– Trained to with ℒ𝟐 loss

– Trained on patches of size 33 × 33 px2

• Yang et al.2:
– 8-layer CNN as generator

– Trained as Wasserstein GAN (WGAN)

– Additional perceptual loss

– Trained on patches of size 64 × 64 px2

Methods
Deep-learning based CT Denoising

1H. Chen et al., "Low-dose CT denoising with convolutional neural network”, ISBI 2017, 2017.
2Q. Yang et al., "Low-Dose CT Image Denoising Using a Generative Adversarial Network […]”, in IEEE TMI, vol. 37, no. 6, 2018.
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Methods
Recovering Invariances

• Our work is based on Rombach et al.1

• Given a denosing network             we can 
analyze internal latent representations     
by decomposing

• To reconstruct which information of    is 
captured in    we train a VAE to learn a 
complete data representation

• To improve reconstruction quality, 
is trained together with critic

as a Wasserstein GAN

• Train 𝑮 on 128 × 128 px2 patches

• A similar VAE can be trained to learn a 
complete data representation of high-dose 
images

1Rombach, Robin, Patrick Esser, and Björn Ommer. "Making sense of CNNs: Interpreting deep representations and their invariances with 
INNs”, ECCV 2020, 2020.
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Methods
Recovering Invariances

• Disentangle information captured in    and 
invariances   by learning a mapping

• is realized by a conditional invertible
neural network1 (cINN)

• Generate new    by sampling               and 
then applying the inverse mapping

• Generate new images that only vary in 
their realization of invariances by applying 
the decoder
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1Kingma, Durk P, and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1x1 Convolutions.” NeurIPS, Vol. 31,2018.
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Methods
Dataset

• Low Dose CT Image and Projection Dataset1

– 50 {head, chest, abdomen} scans

– Reconstructions of size 512 × 512 px2

– Acquired with SOMATOM Definition Flash

– For each scan, simulated low dose acquisitions are 
available (25% dose for abdomen/head, 10% for chest)

• Use weighted sampling scheme, such that 
slices from each patient were sampled with 
equal probability

• Train/validate/test each denoising method and 
our invariance reconstruction method on the 
same data splits
→ Comparable results between different 
methods

1C. McCollough, et al., “Data from Low Dose CT Image and Projection Data [Data Set],” The Cancer Imaging Archive, 2020. 
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Methods
Summary

1. Train denoising methods Chen et al. & 
Yang et al.

2. Train VAE to learn a complete data 
representation of the low dose images

3. For each denoising method and layer in 
the network we wish to evaluate, train a 
cINN to recover the invariances

4. For a given test image, sample 
𝑵 invariances (here 𝑵 = 𝟐𝟓𝟎), apply the 
inverse mapping       and apply the 
pretrained decoder.

5. Train a second VAE which learns a 
complete data representation of the 
high dose images
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Results
Denoising (Chen et al.) 𝒇 = 𝚿 ∘ 𝚽
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Results
Denoising (Chen et al.) 𝒇 = 𝚿 ∘ 𝚽
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Results
Denoising (Yang et al.) 𝒇 = 𝚿 ∘ 𝚽
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Results
Denoising (Yang et al.) 𝒇 = 𝚿 ∘ 𝚽
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Results
Sampling Invariances (Yang et al.) 
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Results
Sampling Invariances (Yang et al.) 
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Results
Sampling Invariances in Target Domain (Chen et al.) 
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Results
Sampling Invariances in Target Domain (Chen et al.) 
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Conclusion & Outlook

Conclusion

• Both denoising networks perform similar as reported in their 
respective papers

• Yang et al. produces more realistic results compared to Chen et al. due 
to training in an adversarial setting

• Both denoising methods are invariant to some anatomical features to 
some extent

• Incomplete data representation learned by the VAE may explain some 
of the invariances

Outlook

• Improve interpretability by 
– Improving the embedding    

– Mapping sampled invariance images                          to semantically meaningful space

• Minimize “undesired” invariances through a finetuning of the 
pretrained denoising methods
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