18 Feb. 2019

Forward and Cross-Scatter Estimation in Dual Source CT Using the Deep Scatter Estimation (DSE)

Tim Vöth^{1,2}, Joscha Maier^{1,2}, Julien Erath^{1,3} and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Ruprecht-Karls-Universität, Heidelberg, Germany ³Siemens Healthcare GmbH, Erlangen, Germany

Overview

- Scatter degrades image quality
- Ideally: correct scatter using Monte Carlo (MC) simulations
 - \rightarrow very long computation times
- Idea of the deep scatter estimation (DSE): train neural network to reproduce MC scatter distributions
 - \rightarrow fast and highly accurate scatter estimation
- Recently: demonstrated outstanding performance of DSE for cone-beam CT^{1,2}:

C = 0 HU, W = 1000 HU

¹ Maier, Kachelrieß et al. *Med. Phys.* (2019) ² Maier, Kachelrieß et al. *J. Nondestruct. Eval.* (2018)

Overview

- Scatter degrades image quality
- Ideally: correct scatter using Monte Carlo (MC) simulations
 - \rightarrow very long computation times
- Idea of the deep scatter estimation (DSE): train neural network to reproduce MC scatter distributions
 - \rightarrow fast and highly accurate scatter estimation
- Recently: demonstrated outstanding performance of DSE for cone-beam CT^{1,2}:
- Now: test DSE in a dual source CT
- Challenge: cross-scatter

Α

¹ Maier, Kachelrieß et al. *Med. Phys.* (2019)

² Maier, Kachelrieß et al. J. Nondestruct. Eval. (2018)

Why DSCT?

- Increased temporal resolution
- Dual energy imaging

[1] Siemens Healthcare GmbH, Henkestr. 127, 91052 Erlangen, Germany. [2] Badea, Piantadosi et al. *Am. J. Physiol. Lung Cell. Mol. Physiol.* (2012)

Simulated Geometry

Simplified geometry:

- 128 × 1024 pixels, flat detector
- *z*-collimation at isocenter C = 70 mm
- Two identical sources
- Angle between sources = 90°
- No anti-scatter grid

DSE – Basic Principle

• Train a U-Net-like¹ CNN to estimate total scatter $I_{s,MC}$ given only (a mapping m of) the total intensity $I_p + I_{s,MC}$ as input

DSE – Basic Principle

• Train a U-Net-like¹ CNN to estimate total scatter $I_{s,MC}$ given only (a mapping m of) the total intensity $I_p + I_{s,MC}$ as input

Corrected intensity:

 $I_{\text{corrected}} = I_{\text{p}} + I_{\text{s,MC}} - \overline{I_{\text{s,DSE}}}$

To prevent overestimation:

$$I_{\text{corrected}} = \begin{cases} (1 - 0.985) \cdot (I_{\text{p}} + I_{\text{s,MC}}) & \text{if } I_{\text{s,DSE}} > 0.985 \cdot (I_{\text{p}} + I_{\text{s,MC}}) \\ I_{\text{p}} + I_{\text{s,MC}} - I_{\text{s,DSE}} & \text{else} \end{cases}$$

• Mapping: pep¹ i.e. $m = p e^{-p}$ with $p = -\ln(I_p + I_{s,MC})$

• Mapping: pep¹ i.e. $m = p e^{-p}$ with $p = -\ln(I_p + I_{s,MC})$

• Mapping: pep¹ i.e. $m = p e^{-p}$ with $p = -\ln(I_p + I_{s,MC})$

• Mapping: pep¹ i.e. $m = p e^{-p}$ with $p = -\ln(I_p + I_{s,MC})$

¹ Ohnesorge, Klingenbeck-Regn et al. Eur. Radiol. (1999)

- Pairs of projections containing $I_{\rm p}+I_{\rm s,MC}$ and $I_{\rm s,MC}=I_{\rm s,AA}+I_{\rm s,BA}$ \rightarrow Simulate CT-scans

- Pairs of projections containing $I_{\rm p}+I_{\rm s,MC}$ and $I_{\rm s,MC}=I_{\rm s,AA}+I_{\rm s,BA}$ \rightarrow Simulate CT-scans
- Simulate I_p by polychromatic forward projection

- Pairs of projections containing $I_{\rm p}+I_{\rm s,MC}$ and $I_{\rm s,MC}=I_{\rm s,AA}+I_{\rm s,BA}$ \rightarrow Simulate CT-scans
- Simulate $I_{\rm p}$ by polychromatic forward projection
- Simulate I_{s,AA} and I_{s,BA} using our in-house MC photon transport code¹

- Pairs of projections containing $I_{\rm p}+I_{\rm s,MC}$ and $I_{\rm s,MC}=I_{\rm s,AA}+I_{\rm s,BA}$ \rightarrow Simulate CT-scans
- Simulate $I_{\rm p}$ by polychromatic forward projection

B

 Simulate I_{s,AA} and I_{s,BA} using our in-house MC photon transport code¹

- Pairs of projections containing $I_{\rm p}+I_{\rm s,MC}$ and $I_{\rm s,MC}=I_{\rm s,AA}+I_{\rm s,BA}$ \rightarrow Simulate CT-scans
- Simulate $I_{\rm p}$ by polychromatic forward projection

B

 Simulate I_{s,AA} and I_{s,BA} using our in-house MC photon transport code¹

¹ Baer, and Kachelrieß Phys. Med. Biol. (2012)

Simulate projections at four tube voltages (80 to 140 kV), 13 table positions (pelvis, abdomen, thorax), 36 view angles (0 to 350°) in 11 patients (10 for training, 1 for testing). No data augmentation.

 $\rightarrow 4 \times 13 \times 36 \times 10 = 18720 \text{ training projections}, \\ 4 \times 13 \times 36 \times 1 = 1872 \text{ test projections}$

Reference Method

- Idea: measure scatter in the full shadow of the collimator and interpolate to obtain scatter estimate on the main detector¹
- Here: two dedicated rows of scatter sensors²
- Linear interpolation between both rows is scatter estimate

scatter sensors

B

¹ Siewerdsen, Jaffray et al. *Med. Phys.* (2006)

² Petersilka, Flohr et al. Med. Phys. (2010)

dkfz.

Analysis of Results

Mean Absolute Error of DSE-Corrected CT Values

Analysis of Results

 \rightarrow DSE is always better than the measurement-based approach, but does not require any additional hardware

Why is the Error in the CT-Values depending on the tube voltage?

\rightarrow The MAPE in the projections can not explain it

Why is the Error in the CT-Values depending on the tube voltage?

SP-MAPE of DSE scatter estimates averaged over all projections in a circle scan

 \rightarrow Tube voltage-dependency of the scatter-to-primary ratio seen in the error of the CT-Values after scatter correction

Conclusions and Outlook

- This study demonstrated the feasibility of DSE in a DSCT
- DSE estimates total scatter in a DSCT with high accuracy (MAPE = 1.7 %)
- Future work:
 - optimization for clinical application
 - leverage information of adjacent projections

Thank You!

The 6th International Conference on

Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.