High Quality High Spatial Resolution Functional Classification in Low Dose Dynamic CT Perfusion Using Singular Value Decomposition (SVD) and K-Means Clustering

> Francesco Pisana^{1,3}, Thomas Henzler², Stefan Schönberg², Ernst Klotz³, Bernhard Schmidt³, and Marc Kachelrieß¹

¹ German Cancer Research Center, Heidelberg, Germany
 ² University Clinic of Mannheim, Germany
 ³ Siemens Healthineers, Forchheim, Germany

dkf7

AHOLTZ-GEMEINSCHAFT

Introduction

In low dose CTP, TACs SNR is very poor.

C = 80 HU, W = 200 HU

Introduction

In this study we aim at detecting the functional similarity between the voxels, independently from the maps.

Introduction

In this study we aim at detecting the functional similarity between the voxels, independently from the maps.

Introduction other methods - TIPS

Time-intensity profile similarity - TIPS^{1,2}:

$$s(\mathbf{r}_1, \mathbf{r}_2) = \frac{\sum_{t=1}^{T} \left(f(\mathbf{r}_1, t) - f(\mathbf{r}_2, t) \right)^2}{2 T \sigma_s^2}$$

$$\sigma_s^2 = \frac{1}{N_{\text{ROI}}(N_{\text{ROI}} - 1)T} \sum_{r_1, r_2 \in \text{ROI}} \sum_{t=1}^T \left(f(r_1, t) - f(r_2, t) \right)^2$$

f Unfiltered image

 $\boldsymbol{r} = (i, j, k)$ Voxel index

t Temporal index

ROI Homogeneous non-enhancing ROI

¹Mendrik et al. "TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps.", *Phys Med Biol* 56, (2011). ²Li et al. "A robust noise reduction technique for time resolved CT.", *Med Phys* 43, (2016).

Introduction other methods - TIPS

TIPS limitations for low dose CT perfusion:

- The sum of squared differences between the TACs mainly depends on their baseline* difference.
- If baseline is removed, the sum of squared differences is dominated by the temporal noise.

* the baseline is defined as the temporal average of all time points prior to contrast media arrival in the arteries.

Introduction other methods - TIPS

TIPS similarity between:

- Two voxels with the identical TAC $s(GM_1, GM_2)$
- Two voxels with different TACs $s(GM_1, TAR)$

After baseline subtraction and for different noise levels simulations:

$$s(\mathbf{r}_1, \mathbf{r}_2) = \frac{\sum_{t=1}^{T} \left(f(\mathbf{r}_1, t) - f(\mathbf{r}_2, t) \right)^2}{2 T \sigma_c^2}$$

Introduction TIPS clustering

To visualize the TIPS similarity results, we perform a k-means clustering using the TIPS similarity formula as a distance measure:

- The k-means centroids are intialized with K=5 random voxels.
- We calculate the sum of squared differences between each voxel and each centroid, and assign each voxel to the cluster with the lowest distance:

$$d_k(\boldsymbol{r}) = \frac{1}{T} \sum_{t=1}^{T} \left(f(\boldsymbol{r}, t) - c_k(\boldsymbol{r}, t) \right)^2$$

 $m(\boldsymbol{r}) = \arg\min_{k} d_k(\boldsymbol{r})$

- The centroids are updated as the average of all voxels belonging to its cluster.
- Steps 2 and 3 are repeated until 99.99% of the voxels do not change cluster anymore.

Introduction TIPS clustering

Material and Methods

We subtract the baseline from the dataset, and re-arrange all the temporal volumes as columns of a matrix D. Then we perform the singular value decomposition (SVD).

⁴Gao H. et al "Robust principal component analysis-based four-dimensional computed tomography.", *Phys Med Biol* **56**, (2011). ⁵Gou S. et al "CT image sequence restoration based on sparse and low-rank decomposition.", *PLoS One* **8**, (2013).

Material and Methods edge-preserving smoothing

We smooth the singular vectors with a guided bilateral filter, where the guiding image is the temporal average image.

$$u_i^*(\boldsymbol{r}) = \frac{\sum_{\boldsymbol{\rho}} w_d(\boldsymbol{\rho}) w_g(\boldsymbol{r}, \boldsymbol{\rho}) u(\boldsymbol{r} + \boldsymbol{\rho})}{\sum_{\boldsymbol{\rho}} w_d(\boldsymbol{\rho}) w_g(\boldsymbol{r}, \boldsymbol{\rho})}$$

$$w_d(\boldsymbol{r} + \boldsymbol{\rho}) = \frac{1}{\sqrt{2\pi}\sigma_d} e^{-\frac{|\boldsymbol{\rho}|^2}{2\sigma_d^2}}$$

$$w_g(\boldsymbol{r} + \boldsymbol{\rho}) = \frac{1}{\sqrt{2\pi}\sigma_g} e^{-\frac{(g(\boldsymbol{r}) - g(\boldsymbol{r} + \boldsymbol{\rho}))^2}{2\sigma_g^2}}$$

$$g(\boldsymbol{r}) = (1/T) \sum_{t=1}^{T} f(\boldsymbol{r}, t)$$

C = 0, W = 0.01

Material and Methods clustering

We used the same k-means clustering algorithm as before, but now it is performed in the singular vectors domain, rather than in temporal domain.

$$d_k(\boldsymbol{r}) = rac{1}{3} \sum_{i=1}^3 \left(u_i^*(\boldsymbol{r}) - c_{k,i}(\boldsymbol{r})
ight)^2$$
 $m(\boldsymbol{r}) = rg\min_k d_k(\boldsymbol{r})$

Results

Results Neuro 1

The fifth cluster goups the vessels and $d_5(\mathbf{r})$ is not displayed here.

Results Liver

$$egin{aligned} d_k(oldsymbol{r}) &= rac{1}{3}\sum_{i=1}^3 ig(u_i^*(oldsymbol{r}) - c_{k,i}(oldsymbol{r})ig)^2 \ m(oldsymbol{r}) &= rg\min_k d_k(oldsymbol{r}) \end{aligned}$$

ALP: C=40 mL/(min 100 mL); W=90 mL/(min 100 mL) PVP: C=80 mL/(min 100 mL); W=160 mL/(min 100 mL)

Outlook preliminary results

These distance maps could be used to guide a smoothing of the dataset before the maps calculation.

 $f^{*}(\boldsymbol{r},t) = \frac{\sum_{\boldsymbol{\rho}} w_{d}(\boldsymbol{\rho}) w_{s}(\boldsymbol{r},\boldsymbol{\rho}) f(\boldsymbol{r}+\boldsymbol{\rho},t)}{\sum_{\boldsymbol{\rho}} w_{d}(\boldsymbol{\rho}) w_{s}(\boldsymbol{r},\boldsymbol{\rho})}$

$$w_s(\boldsymbol{r} + \boldsymbol{\rho}) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(d_i(\boldsymbol{r}) - d_i(\boldsymbol{r} + \boldsymbol{\rho}))^2}{2\sigma_i^2}}$$

Where *i* is the cluster the voxel **r** belongs to.

 σ_i is the standard deviation of the distances from the *i*th centroid of all voxels belonging to the cluster *i*.

CNR = 26

dkfz.

CNR = 58

Phantom Study preliminary results

Phantom simulation with ischemic region. Results on blood volume maps: our approach (on the right side) is better able to preserve original shape and signal of the ischemic region.

Ground truth

GM: 3.5 WM: 2 TAR: 3.75 NVT: 1.25

GM: 4

WM: 2.6

TAR: 4.2

NVT: 2.2

BV map obtained

BV map obtained after smoothing the dataset with Gaussian

GM: 3.6 WM: 2.2 TAR: 4 NVT: 1.5 BV map obtained after smoothing the dataset with TIPS

GM: 3.4 WM: 2.2 TAR: 3.8 NVT: 2.1 BV map obtained after smoothing the dataset with our method

GM: 3.6 WM: 2 TAR: 3.9 NVT: 1.2

Conclusions

- The proposed method correctly separated voxels with different functional features.
- It proved to be more robust than the TIPS method for functional similarity measurements (independently from the perfusion model) in dynamic CTP, and robust to spatial and temporal noise.
- Computational times are significantly lower than in the TIPS method, due to the dimensionality reduction.
- Potential use of such algorithm, in low dose dynamic CT perfusion, could be:
 - to efficiently guide a dataset smoothing before maps calculation, or a smoothing of the maps themselves,
 - to provide more information when the maps are too noisy or blurred, which can be used both as a second reader, or to help the radiologists in lesion detection and segmentation.

Thank You!

This presentation will soon be available at www.dkfz.de/ct

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelrieß (marc.kachelriess@dkfz.de). This work was supported by Siemens Healthineers, Forchheim, Germany. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

