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In the order of 1000 projections
with 1000 channels are acquired
per detector slice and rotation.
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Data Completeness
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Each object point must be viewed by an angular interval of 
180° or more. Otherwise image reconstruction is not possible.



Data Completeness
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Any straight line through a voxel must be intersected by the 
source trajectory at least once.



Emission vs. Transmission

Emission tomography

• Infinitely many sources

• No source trajectory

• Detector trajectory may be an 
issue

• 3D reconstruction relatively 
simple

Transmission tomography

• A single source

• Source trajectory is the major 
issue

• Detector trajectory is an 
important issue

• 3D reconstruction extremely 
difficult



Analytical Image Reconstruction



Model

Solution



2D: In-Plane Geometry

• Decouples from longitudinal geometry

• Useful for many imaging tasks

• Easy to understand

• 2D reconstruction
– Rebinning = resampling, resorting

– Filtered backprojection
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In-Plane Parallel Beam Geometry

Measurement:

y
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Filtered Backprojection (FBP)

Measurement:

Fourier transform:

This is the central slice theorem:

Inversion:



Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.

2. Backproject the filtered data into the image:

Reconstruction kernels balance between spatial resolution and image noise.

Smooth Standard
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Backprojection



Start of
spiral scan

Scan
trajectory

Direction of
continuous

patient
transport

0

0

z

t

1996: 1998: 2002: 2004:
1×5 mm, 0.75 s 4×1 mm, 0.5 s 16×0.75 mm, 0.42 s 2⋅32×0.6 mm, 0.33 s

Kalender et al., Radiology 173(P):414 (1989) and 176:181-183 (1990)

collimation C

table increment d



360° LI Spiral z-Interpolation 
for Single-Slice CT (M=1)

Spiral z-interpolation is typically a linear interpolation between points 
adjacent to the reconstruction position to obtain circular scan data.

Rzz =
d

z



without z-interpolation with z-interpolation



180° LI Spiral z-Interpolation 
for Single-Slice CT (M=1)

180° spiral z-interpolation interpolates between direct and 
complementary rays.

d

z



Spiral z-Filtering for Multi-Slice CT
M=2, …, 6

Spiral z-filtering is collecting data points weighted with a triangular or 
trapezoidal distance weight to obtain circular scan data.

z
For complete data:

We find:
p ≤ 1.4 for 52° fan angle
p ≤ 1.5 for 43° fan angle



CT Angiography:
Axillo-femoral
bypass

M = 4

120 cm in 40 s

0.5 s per rotation
4×2.5 mm collimation
pitch 1.5



1×5 mm
0.75 s

4×1 mm
0.5 s

16×0.75 mm
0.375 s

256×0.5 mm
<< 1 s ?

2⋅32×0.6 mm
0.375 s

The Cone-Beam Problem



Kachelrieß et al., Med. Phys. 27(4), April 2000



The ASSR Algorithm

γ

Rα
3 intersections

for each R-plane

n

R

z d

τ

Kachelrieß et al., Med. Phys. 27(4), April 2000

Mean deviation at distance RM:       ∆ ≈ 0.007⋅d

at distance RF:       ∆ ≈ 0.014⋅d



d–Filtering in the Image Domain
d

ξ,, yx

R

final,
transaxial images

• No in-plane interpolations
• Interpolation along d
• Arbitrary d-filter width

Kachelrieß et al., Med. Phys. 27(4), April 2000



Comparison to Other Approximate Algorithms
180°LI d=1.5mm Π d=64mm MFR d=64mm ASSR d=64mm

H. Bruder, M. Kachelrieß, S. Schaller. SPIE Med. Imag. Conf. Proc., 3979, 2000



Patient Images
with ASSR

• Sensation 16
• 0.5 s rotation
• 16×0.75 mm collimation
• pitch 1.0
• 70 cm in 29 s
• 1.4 GB rawdata
• 1400 images

• High image quality

• High performance

• Use of available
2D reconstruction 
hardware

• 100% detector usage

• Arbitrary pitch



Data courtesy of Dr. Michael Lell, Erlangen, Germany

CTA, Sensation 16



CT-Angiography
Sensation 64 spiral scan with 2⋅32×0.6 mm and 0.375 s



Extended Parallel Backprojection (EPBP)
3D and 4D Feldkamp-Type Image Reconstruction

for Large Cone Angles

• Trajectories: circle, sequence, spiral

• Scan modes: standard, phase-correlated

• Rebinning: azimuthal + longitudinal + radial

• Feldkamp-type: convolution + true 3D backprojection

• 100% detector usage

• Fast and efficient

Kachelrieß et al., Med. Phys. 31(6), June 2004



z

longitudinally 
rebinned 
detector

C

C

C+B

C: Area used for convolution
B: Area used for backprojection
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Kachelrieß et al., Med. Phys. 31(6), June 2004



ECG

Kymo

The complicated 
pattern of overlapping 
data …

… will become even 
more complicated with 
phase-correlation.

⇒ Individual voxel-by-
voxel weighting and 
normalization.

5-fold

4-fold

3-fold
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The 180° Condition

The (weighted) contributions to each object point
must make up an interval of 180° and weight 1.

r

180° in 3 segments

1)( =+∑
k

kw πϑ

∫ = πϑϑ )(wd

and



• Spiral
• ASSR Std
• p = 1.0

• 256 slices
• (0/300)

• Spiral 
• EPBP Std
• p = 1.0

• Spiral 
• EPBP Std
• p = 0.375

Kachelrieß et al., RSNA 2002, Fully3D 2003 and 
Med. Phys. 31(6): 1623-1641, 2004



EPBP Std EPBP CI, 0% K-K EPBP CI, 50% K-K

Patient example, 32x0.6 mm, z-FFS, p=0.23, trot=0.375 s.



Iterative Image Reconstruction



Update 
equation

Model

This is an iterative solution.



Influence of Update Equation and Model



1. Problem

2. Solution

3. Discretization

1. Problem

2. Discretization

3. Solution

Classical Iterative Reconstruction

Analytical Reconstruction



CT System Matrix

Radon or x-ray 
transform

image to be
reconstructed

measured
rawdata



Kaczmarz‘s Method



Kaczmarz‘s Method (2)

• Successively solve

• To do so, project onto the hyperplanes

• Repeat until some convergence criterion is reached



Kaczmarz‘s Method (3)



Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique 

(ART)



Kaczmarz‘s Method = ART

Update 
equation

Model



Kaczmarz‘s Method = ART

512 iterations 512 iterations



apply inverse model

apply forward model



Direct vs. Filtered Backprojection



Flavours of Iterative Reconstruction

• ART

• SART  

• MLEM

• OSC

• and hundreds more …



Iterative Reconstruction: Parameters
• Image/object representation

– Pixel centers

– Pixel area

– Blobs

– Sampling density (pixel size, pixel locations, …)

• Forward model (forward projection)
– Joseph-type, Bresenham-type, distance-driven-type, …

– Needle beam (infinitely thin ray), many needle beams per ray, …

– Beam shape (varying beam cross-section, angular blurring, …)

– Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, …)

• Objective function, update equation
– Statistical model (Gaussian, Poisson, shifted Poisson, …)

– Regularisation (edge-preserving, …)

– Artifact reduction

• Inverse model (backprojection)
– Transpose of forward model

– Pixel-driven backprojection

– Filtered backprojection

– …



Image Representation



Image Representation



Image Representation



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Forward Model: Beam Shape



Image Representation and 
Forward Model are Linked!

Joseph’s forward projector



What Makes Iterative Recon 
Attractive?

• No need to find an analytical solution

• Works for all geometries with only small adaptations

• Allows to model any effect

• Allows to incorporate prior knowledge
– noise properties (quantum noise, electronic noise, noise texture, 

…)

– prior scans (e.g. planning CT, full scan data, …)

– image properties such as smoothness, edges (e.g. minimum TV)

– …

• Handles missing data implicitly (but not necessarily 
better)

1L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012



Cardiac Cycle of a Mouse

PC-FDK

iTV1

HDTV2

Axial Sagittal Coronal

Cardiac Gating : ∆C=10% 
Image window:   C=0 HU / W=1200 HU

1L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß, Phys. Med. Biol. 56, Feb. 2012
2L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012



Generations of Reconstruction

?

2011
(iterative)

2015
(MoCo)

2020
(????)

2007
(analytical)

C = 400 HU, W = 1400 HU

voxels may movevoxels are stationary



Downsides

• Classical iterative recon is slow!

• Classical iterative recon cannot do small FOVs.

• There are many open parameters.

• The reconstruction is non-linear.

• Can we trust the images?



Ordered Subsets

• Divide one iteration into S sub-iterations.

• Each of these S subsets covers N/S projections.

• During one iteration all subsets and therefore all 
projections are used exactly once.

• Per iteration the volume is updated S times (once per 
sub-iteration).

• An up to S-fold speed-up can be observed.



Ordered Subsets
Illustration for N = 32 Projections

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

Conventional procedure without subsets (S = 1)

Ordered subsets with S = 8 sub-iterations (4 projections per subset)



Ordered Subsets

0123
4

5
6

31

8
9

12

13

10

11

14

16

19

22

20

27
26

25

7

29

18

23

21

17

28

24

30

15

N = 32, S = 8, i.e. 4 projections per subset



Sequence Can be Generated Using 
Simple Bit Reversal

0  ->   0

1  ->  16

2  ->   8

3  ->  24

4  ->   4

5  ->  20

6  ->  12

7  ->  28

8  ->   2

9  ->  18

10  ->  10

11  ->  26

12  ->   6

13  ->  22

14  ->  14

15  ->  30

16  ->   1

17  ->  17

18  ->   9

19  ->  25

20  ->   5

21  ->  21

22  ->  13

23  ->  29

24  ->   3

25  ->  19

26  ->  11

27  ->  27

28  ->   7

29  ->  23

30  ->  15

31  ->  31



Using Ordered Subsets Makes it Faster!
S = 1 (no subsets) S = 32 (ordered subsets)

512 iterations 16 iterations

512 iterations 16 iterations

C = 0 HU, W = 1000 HU



Image Updates
S = 1 (no subsets) S = 32 (ordered subsets)

512 updates 512 updates

512 updates 512 updates

C = 0 HU, W = 1000 HU



Reconstructing Small FOVs

– =

ROI

FBP with clipped ROI

forward project

Sinogram ROI sinogram

FBP
∆xyFull = 0.25 mm

A. Ziegler, T. Nielsen, and M. Grass, “Iterative Reconstruction of Region of Interest for Transmission 
Tomography”, Med. Phys. 35 (4), Mar. 2008

reconstruct
analytically

IROI reconstruction
∆xyROI = 0.04 mm

reconstruct
iteratively



Practical Ways to do it Iterative

• In many cases artifact correction is iterative
– Higher order beam hardening correction

– Cone-beam artifact correction

– Scatter correction

• Practical “iterative reconstruction” approaches
– often use empirical solutions

– combine iterative with analytical reconstruction

– combine iterative or analytical reconstruction with image 
restoration



• Aim: less artifacts, lower noise, lower dose

• Iterative reconstruction
– Reconstruct an image.

– Does the image correspond to the rawdata?

– If not, reconstruct a correction image and continue.

• SPECT + PET are iterative for a long time!

• CT product implementations
– ASIR (adaptive statistical iterative reconstruction, GE)

– iDose (Philips)

– IRIS (image reconstruction in image space, Siemens)

– AIDR 3D (adaptive iterative dose reduction, Toshiba)

– VEO, MBIR (model-based iterative reconstruction, GE) 

– IMR (iterative model reconstruction, Philips)

– SAFIRE, ADMIRE (advanced modeled iterative reconstruction, Siemens)

– FIRST (forward projected model-based iterative reconstruction solution, 
Toshiba)

Iterative Reconstruction



apply inverse model

apply forward model

• Rawdata regularization: adaptive filtering1, precorrections, filtering of 
update sinograms...

• Inverse model: backprojection (RT) or filtered backprojection (R-1). In 
clinical CT, where the data are of high fidelity and nearly complete, one 
would prefer filtered backprojection to increase convergence speed.

• Image regularization: edge-preserving filtering. It may model physical 
noise effects (amplitude, direction, correlations, …). It may reduce noise 
while preserving edges. It may include empirical corrections.

• Forward model (Rphys): Models physical effects. It can reduce beam 
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, …

regularize
image

regularize
rawdata

1M. Kachelrieß et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001



Conventional FBP with rawdata denoising (all vendors) AIDR3D (Canon), ASIR, ASIR-V (Ge), IRIS (Siemens), 
iDose (Philips), SnapShot Freeze (GE), iTRIM (Siemens)

Veo123/MBIR (Ge) FIRST (Canon), IMR (Philips), SAFIRE, ADMIRE (Siemens) 

M. Kachelrieß. Current Cardiovascular Imaging Reports 6:268–281, 2013



Siemens Standard

σ = 17.6 HU 

SAFIRE VA40

σ = 7.8 HU 

IRIS VA34

σ = 12.3 HU 

Plain FBP

σ = 26.8 HU 

CT images provided by Siemens Healthcare, Forchheim, Germany



FBP ASIR Veo

Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA.



FBP IMR

Courtesy of Dr. Thomas Köhler, Philips, Germany.



Filtered Backprojection AIDR3D

Courtesy of Dr M Chen, NHLBI, National Institutes of Health, USA

152 ± 53 HU 150 ± 29 HU



Original CBCT Reconstruction iCBCT Reconstruction

Courtesy of Dr. Pascal Paysan, Varian iLab, Baden, Switzerland.

Increased homogeneity, less image noise due to Acuros 
scatter correction and iterative image reconstruction

Planning CT for reference

C = 0 HU, W = 1000 HU



Vendor’s Improvements
in Iterative Reconstruction

Standard
B40

SAFIRE
I40/5

ADMIRE
I40/5

Images provided by Siemens Healthcare, Forchheim, Germany



Vendor’s Improvements
in Iterative Reconstruction

Standard
B64

SAFIRE
l64/5

ADMIRE
l64/5

Extremely low dose case:  CTDIvol = 0.04 mGy, DLP = 1.64 mGy⋅cm, Deff = 0.025 mSv

Images provided by Siemens Healthcare, Forchheim, Germany



Vendor’s Improvements
in Iterative Reconstruction

Akagi et al. Full Iterative Reconstruction Optimized for Specific Organs -
Principle and Capabilities. RSNA 2015. 

Canon Aquilion ONE ViSION FIRST Edition



Usual Assumption: 
CT is Linear and Translation Invariant

• PSF and MTF are well-defined

• Noise is well-defined

• Noise and spatial resolution are related

• Parameters are valid for all objects

• Simple phantoms can be used to assess image quality

• …



Analysis of Siemens’ SAFIRE Algorithm
(Taken at the Siemens Somatom Flash DSCT Scanner)

• Semiantropomorphic phantom
– 20 cm × 30 cm thorax phantom of 20 cm length with 2.5 cm water extension 

ring, totalling to 25 cm × 35 cm size

– 10 cm QRM 3D medium contrast insert with 40 HU background and 20 HU 
lesions (at 120 kV)

• Scan and recon parameters
– 2⋅64 × 0.6 mm collimation

– U = 120 kV

– p = 0.6

– trot = 1.0 s

– Seff = 0.6 mm

– 1 high dose scan with 1100 mAseff

– 25 low dose scans with 44 mAseff each

– FBP ( = analytical): B30s, B50s

– SAFIRE ( = iterative): I30s and I50s, strengths 3 and 5

– Averaging of 25 low dose scans after reconstruction

– Mean±StdDev in large medium contrast lesion

– Display at C = 50 HU and W = 100 HU

C = 50 HU, W = 100 HU

Low Dose Average High Dose



Average of 25 Low Dose Scans

19 ± 12 HU

20 ± 41 HU

19 ± 8 HU

20 ± 27 HU

19 ± 5 HU

18 ± 16 HU

50s

30s

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)



High Dose Scan

18 ± 10 HU

17 ± 40 HU

18 ± 6 HU

19 ± 25 HU

19 ± 4 HU

18 ± 13 HU

50s

30s

FBP (B kernels) Iterative (strength 3) Iterative (strength 5)



Noise Evaluation using Sigma Images

• Same phantom as in example 1

• Same scans as in example 1

• Calculation of sigma images from the 25 independent samples
– Compute unbiased estimator for the sample variance for each pixel

– Take the square-root of each pixel’s estimated variance 

FBP (B30s) SAFIRE (I30s strength 3) SAFIRE (I30s strength 5)

C = 40 HU, W = 50 HU



Noise vs. mAseff
(Taken at the Siemens Somatom Flash DSCT Scanner)

• Abdomen phantom + small fat ring

• Tube voltage U = 120 kV

• Slice thickness Seff = 0.6 mm

• Pitch p = 0.6

• Variation of the effective tube current 
– mAseff = 100 mAs … 550 mAs

– DLP = 57 … 312 mGy⋅cm

• Noise was measured in VOIs



Image Noise vs. mAseff

B30f

B70f

I30f 3

I70f 3

I30f 5

I70f 5

300 HU

150 HU

σ

1/sqrt(I⋅Trot / p)
1/sqrt(100 mAs)

0
1/sqrt(400 mAs)



Analysis of GE‘s MBIR (Veo) 
Iterative Reconstruction Algorithm

Li et al., MedPhys 41(7), July 2014



Contrast Dependency of the PSF
(of GE’s FBP and Veo Algorithms)

Li et al., MedPhys 41(7), July 2014



Dose Dependency of the PSF
(of GE’s FBP and Veo Algorithms)

Li et al., MedPhys 41(7), July 2014



Conclusions on Li et al. (Veo Algorithm)

• Our previous findings (from the simple examples) are 
confirmed.

• Spatial resolution is a function of
– location

– contrast

– dose

– …



Summary
• Analytical image reconstruction

– is compute efficient

– requires new solutions for new trajectories

– is what most images are reconstructed 
with

• Iterative image reconstruction
– requires much more computational effort

– allows to easily model constraints

– allows to incorporate prior knowledge

• Practical modern solutions
– often are a combination of analytical and 

iterative recon

– are offered by the major manufacturers of 
diagnostic CT

• Future
– Let neural networks do the regularization

Iterative reconstruction and 
restoration at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany

Conventional recon 
at 100% dose



Thank You!

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


