Hybrid Scatter Correction (HSC) for Diagnostic CT and for Flat Detector CT

Matthias Baer^{1,2}, and Marc Kachelrie^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Develop a fast, physics-based, patientspecific and object-dependent scatter correction algorithm for CT imaging.

Typical scatter artifacts: Cupping and streaks

Scatter Estimation

Monte Carlo-based

Measured intensities (primary plus scatter)

Reconstruction $\hat{I}^{ ext{CB}}_{ ext{s}}(oldsymbol{c}_1,oldsymbol{c}_2) = \overline{\Phiig(I_{ ext{ps}},oldsymbol{c}_1ig)} * K(oldsymbol{c}_2)$ **Convolution of the** scatter potential Φ with scatter kernel K Simulation of physical photon paths I_{ps}: Primary plus scatter based on density and material intensity distribution c₁ and c₂ (vectors): Open **Physical effects:** coefficients Photo effect **Compton scattering** We used the convolution-**Rayleigh scattering** based method of Ohnesorge et al.* Monte Carlo-based scatter estimate **Convolution-based scatter estimate**

Patient-specific, many computations

Not patient-specific, few computations

Convolution-based

Measured intensities (primary plus scatter)

* Ohnesorge et al., Efficient scatter correction algorithm for third and fourth generation CT scanners, Eur. Radiol., 9, 563-569 (1999).

Scatter Estimation

Monte Carlo-based

Measured intensities (primary plus scatter)

Patient-specific, many computations

Reconstruction $\hat{I}^{ ext{CB}}_{ ext{s}}(oldsymbol{c}_1,oldsymbol{c}_2) = \overline{\Phiig(I_{ ext{ps}},oldsymbol{c}_1ig)} * K(oldsymbol{c}_2)$ **Convolution of the** scatter potential Φ with scatter kernel K Simulation of physical photon paths I_{ps}: Primary plus scatter based on density and material intensity distribution c₁ and c₂ (vectors): Open **Physical effects:** coefficients Photo effect **Compton scattering** We used the convolution-**Rayleigh scattering** based method of Ohnesorge et al.* Monte Carlo-based scatter estimate **Convolution-based scatter estimate**

Not patient-specific, few computations

Convolution-based

Measured intensities (primary plus scatter)

* Ohnesorge et al., Efficient scatter correction algorithm for third and fourth generation CT scanners, Eur. Radiol., 9, 563-569 (1999).

Hybrid Scatter Correction

Measured intensities (Primary plus scatter)

Number of Calibration Steps

Number of Photons

Monochromatic simulation study in clinical CT geometry Scatter simulation by Monte Carlo

N_{Ph,ref}: Photon number for the low noise reference Monte Carlo simulation used for the uncorrected image

Diff. to Reference Image Corrected N_{Ph} = 0.1 N_{Ph,ref} C = 0 HL W = 200 HL C = 0 HU W = 200 HU Corrected N_{Ph} = 0.01 N_{Ph,ref} C = 0 HU W = 200 HU **C** = 0 H V = 200Corrected N_{ph} = 0.001 N_{ph,ref}

C = 0 HU W = 200 HU

C = 0 H W = 200 H

 $N_{cal} = 16$

Scatter Correction Results

Polychromatic simulation study in clinical CT geometry and measurements in cone beam CT geometry

Hybrid scatter correction (HSC): Monte Carlo simulation for only 16 projections and 100 times less photons than in the pure Monte Carlo correction.

Additionally the empirical beam hardening correction (EBHC*) method was applied to correct for beam hardening artifacts.

Reference = MC-scatter + BHcorrected

*Kyriakou, Y.; Meyer, E.; Prell, D.; Kachelrieß, M.; Empirical Beam Hardening Correction (EBHC) for CT, Med. Phys. 37, 5179-87 (2010).

Summary and Conclusion

- With the hybrid scatter correction we propose a patient-specific, physics-based, and object-dependent scatter correction algorithm based on a Monte Carlo simulation of scatter intensities
- To reduce computational needs the Monte Carlo simulation is regularized with a convolution-based scatter estimation
 - The number of simulated Monte Carlo photons can be reduced
 - Monte Carlo scatter estimates are computed for only a fraction of all projections
- Using the hybrid scatter correction resulted in a speed up of a about a factor of 100 as compared to a full Monte Carlo scatter correction for the cases investigated
 - Both the Monte Carlo software and the hybrid scatter correction algorithm were not fully optimized for speed

Thank You!

This project was supported by a grant from the Intel Corporation.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

This presentation will be soon available at www.dkfz.de/ct.

