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Filtered Backprojection (FBP)

Measurement: p(?J,&) = /dxdy f(z,y)o(xcosd + ysind — &)

Fourier transform:
/dfp(ﬁ, 5)6—2mfu _ /da:'dy flx, y)e—Qmu(x cos ¥ + ysin v)

This is the central slice theorem: P(v,u) = F(ucos?, usin )

Inversion: f(z,) :/dﬁfdu u| P(8, u)e2miu(@ cos ¥ + ysind)
0 —oo

T

— [49p(0,€) + K(©)

0

E=x cos U+ysin v
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2D Parallel Beam Reconstruction

Analytical tomographic reconstruction
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We shall now show that the basic Eq. (1) and (2) ean be
rewritten in a form not involving Fourier transforms, but
containing only integrals of functions defined in the real space
of observation. Eq(2) can be recast into the form,

.
Sy = f I IR| F(R, 8) exp[—2wiRr cos(y — 6)] dR db
0w
@
Suppose we define
+a
Fue = f IR F(R; 0) exp(—2wiR]D) dR.
Then Eq. (3) for f(r, ) becomes

S, 0) = fo " ¢ (r coste — ), 0] do ®

in Proc. Nat. Acad. Sci. USA 68 (1971)

points | = ma (where m is a positive or negative integer), then
Eq. (9) can be d in the form of an i as

¢'(na; 6) = a -_t:_glmm gltm — njal, (13
or, using Eq. (12),
¢'(na; 8) = gina; 8)/4a — (1/7%) ’%‘ glin + pla; 01/p*
(14)

We have assumed here that g(i; 8) is given at a set of points
separated by the interval a. This is, in fact, a great advantage,
since on are most.

made by scanning the data at regular intervals along a line on.
& photograph using & densitometer, or by using some suitable
device for direct measurement of intensity. This interval be-
comes an i in the application of the

Eqs. (4) and (5) are the ialb asis of our new

method. S izing the above we may describe

in which g’(1; 8) can be expressed in terms of the P
Fouri rting

the lution method as follows:

data g(l; ) by the following
Eq. (1),

4
ol 0) = f FR,0) exp(~2eiR) OB (6)
Comparing Eq. () and Eq. (6), we see that the F.T. of g{l;
) is F(R; 6), while the F.T'. of g’(/; 0) is |R| F(&; #), s0 that
F.T.of g'(; 6) = [E.T. of g(i; )] X [F.T. of (D] (M
where 'R| is the F.T. of the funetion q(f), or
" o) exp@riry a ®
fnvolution theorem for the inverse of
hnsforms, it follows from Eq. (7) that
pu of g(i; 8) and q(h), or, explicitly,
he
ol 0) g = b) dls ©

odified function ¢*(l; #), we require
lv. Inverting Eq. (8), we have, for-

|R| exp(—2xiRY) dR a0

ever, be evaluated as the integrand
bis difficulty, we may replace the
£q. (10) by —A/2and +A4/2, where
umber, when the integral exists for

all values of I. Thus, define
+A/2
al) = f 'R exp(—2xiRD) dR an
—asz
Disregarding the difference between gu(na) and g(na) when
A is large enough, we have, evaluating the integral in Eq. (11),
g(na) = 1/4a* forn =0
= —1/¢'n%a* for nodd 12
= 0 for neven

Hence, if we have data for g(l; 6) at a set of equally spaced

For a two-dimensional object (or section), lincar shadow-
graphs at different angles # are seanned at intervals a and
these data are then convoluted with g(na) to obtain ¢’(ra; 6)
[using Eq. (14)), also at intervals a. These are then used for
calculating f(r, ¢) using Eq. (5), which may also be written in
the form of n sum;

x
Jir, @) = (e, k) = 21 ¢ Liro cos(kys — ths), o]  [15)
i

where 7, k, £, N are integers and ry and g are intervals of r and
¢. The interval for 8 is 8, = x/N, where N is the number of
shadowgraphs recorded at regular intervals over the range
—7/2 to +x/2. In Eq. (15), the value of jro cos(ke — i)
will not in general be & multiple of a; therefore we have to
interpolate betwoen the caleulated values of ¢’(na; 6), so that
the resolution of the final data obtained for f(r, ¢) will depend
on the fineness of the interval at which the shadowgraph data
are available and th v of the i Inti

asis of rolation

of section of 2

for setting 8

"¢'= 0 for the
linear shadowgraph

Fio. 1. Diagram ill ing the f of shad h
with incident beam at angle # to the zero setting normal to the 7z
plane. The section at right angles to the axis of rotation at =
(shoton shaded) yields the linear strip in the oval shadowgraph on
the right. Measurement of the intensity at the point P gives the
values of gli8;z).
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Spiral Cone Beam CT Reconstruction

Analytical tomographic reconstruction
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However, since it has tumed out that the differences between
these options are negligible we will only present the defini-
tions and rebinning equations for the FL method, which is
the most simple one.

Although all following considerations only use elemen-
tary geometry, the multitude of different coordinate systems
and the complexity of the ray geometries for a given focus
position a and detectors u and v together with the tilted
planes under consideration complicate the situation. Thus be-
fore starting to discuss the FL reconstruction method we will
do some preparations first

A. Coordinate systems
The global &7 system is given by rotating the x-y-z
axes by #+ay about the z-axis. The base vectors are
[ cos(ag+ @)
Ho)=| sin(ag+d) |, ;)n‘u:[ cos(ag+ @)
\ (1] 0

—sin(ag+#) ]

(0
gi)= t 0=z
We define the local (ie., comesponding to a given recon-
struction posifion az) tilted coordinate system with base
(x'.¥".z") to have both the x'- and the y'-axis lying in R.
The y"-axis shall coincide with the central ray at projection
a@=ay. Thus we have

sinarg cos y ¥ cosayg

{ cosagcos y"} ( *smn“l
smy |/ \ ©

—cos ag sin ¥ |
—sinagsiny
cosy
Rotating this system by &' about the ="-axis yields the local
parallel geometry &'-7'-{" system with the base vectors
[ cosagcos #” cos y—sinay sin ¥

osarg sind’ |,
Detector Y /

[+ cos ap cos &'

—sma,:usw]
my

e(op-r/2)

<pect to the world coor-
enter of the above given
e primed origin o'. All
tems reduce to their cor-

eloa) s (uaprimed identifiers)

Medical Physics, Vol. 27, No. 4, April 2000

It will turn out that the transformation between local ray
parameters (#',£') and global ray parameters (8, £) is quite
important. It is given from the longitudinal projection (along
2) of a ray from local to world coordinates. To be more
precise: For a given ray with the parameters (0'.£') we are
looking for the parameters (i), £) that the comesponding line
would yield after having been projected into the plane =
=0. Mathematically this yields the term

P(o'+&& (') +Ry'(87))=£H D) +Rap(9),

with the projection operator
[1 0 0)

r=fo o).

\0 0 0/

Thus allows us to denive the desired transformation rules. We
will just state the results:
cos "

€08 B= e,
veos™ ' +cos” ysin® &

sin &' cos ¥
s = —
Jeos® & +cos” y s O
£'cosy
Jeos? B +cos” ysin® 9
To calculate the primed parameters as a function of the
unprimed ones we need the inverse transform of Eq. (9)

R cos f cos y
o5 i = e
Vsin® &+ cos” ycos® &

, sin &
sin ' = ——0o———r
vsin® &+ cos” ycos® &

&
Vsin® 8+ cos” ycost &

For convenience, Fig. 5 gives a view onto the reconstruction
plane R and the primed coordinates. Further we want to give
a useful relationship that directly becomes evident from Eqs.
(9) and (10):

Veos® 8" +cos” ysin® 9 ysin® @ +cos’ ycos® P=cosy

B. Projections onto the detector plane

It will be necessary to know the projection of a given
point r from the focus location s(a) onto the detector. The
calculation is uninstructive, we will simply state the result in
detector coordinates 1 and v:

u=p(—xcosa—ysina),
(a5=:]
v=plds=—z|
™

with
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Short Scan Cone Beam Reconstruction
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Detector Array

FI6. 1. Cone-beam geomenry with equally spatial cobe-beam data. (u,v)
forms a local detection coordinate system with its horizontal axis parallel to
the vector tangeasial to the spiral locus; (s, 7) forms an altemative detection
system with its borizontal axis parallel o the x-y plane.

&1=(—cosh,—sin).0), 2)

&=a"(\)||d" ()| =(—sin\ cos £ cosh cos £,sin €),
3)

“)

ho et al f
i3 form a
pred using
stance D

iven by a
distances
orrespond
tor array.
frui-spatial

VOI re-

- T T m data to
fan-beam data conversion via a cosine comrection,” and (2)
fan-beam reconstruction using a Noo ROI reconstruction
fornmla ! First, cone-beam data are approximately converted
to fan-beam data via cosine comection:’

P

) ) JD

M) =g ) ——. {5)
vD*+u+u*

Then, we can apply the super-short-scan fan-beam formula
(37) in Ref. 1 for 3-D VOI reconstruction:

Medical Physics, Vol. 31, No. §, June 2004
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1 [ [ DTFar
J dn

7= 37 )M Bz

2a

*Xwih. i) g i.5)

- Y . Algebraic Recenstruction Techniques (ART) for
i a4 Three-dimensional Electron Microscopy and X-ray
[F=d(n)]-a1 PhOt()gl'i.lph_\'

or(NE)=
o 7(A)
T T e T
5 RicHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN
U
du hglii—u) —
[ a2
- Center for Theoretical Biolog)
+ 2 2|l i) ’
o Jv &
and
u u? u
—=Dcosé+ ——— —tané(usiné+v cos€), (11)

Y Deosé D Department of Computer Science,
State University of New York at Buffalo, Amherst, N. Y. 14226, U.S.A.

B g Wl o

K_ sin & m Btanzlusmt veosé),
(12)

el » O 2 107

where T*(.7) and 7 (.%) are the coordinates of ¥ pro- (Received 12 August 1970)

Jected on the detector plane, w(A.if) is the weight function

as Noo et al defined in Ref 1, gi"().%.5) is a natural g ’

extension of formula (38) in Ref. 1, and up is the balf length We give a new method for direct reconstruction of three-dimensional

of the detector plane. The definition of 7)) in (9) will be

specified in Sec. III. Detailed derivations of (11) and (12) are e N - v

in the Appendix. Function fiz(-) in (10) represents the Hil- exceed a range of 60 degrees. The method works for totally asymmetric

bert transform kemel defined as objects, and requires little computer time or storage. It is also applicable

to X-ray photography, and may greatly reduce the exposure compared

to current methods of body-section radiography.

objects from a few electron micrographs taken at angles which need not

hgl nJE*J dai sgn(a)e'

Note that on the mid-plane in the case of circular scanning,!
vD*+ir* 1

D=0l Rot a4

Hence, we approximately have

X [w(h DgF T |g-awg

There is a substantial flexibility with constructing a local
detection coordinate system. Some researchers, such as
Kachelsiess  etal® prefer wsing dy=&. d,
=(—sinh.cos).0) and d3=(0.0,1) to define a natural detec-
tion system (w, 7) shown as in Fig. 1. In this local system,
the reconstruction can be performed using the same formulas
as (5)—(10) except that




Exact Spiral Reconstruction
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endpoints of the PI segiment containing x. We will call Ipi(z) := [su(z), 5 (z)] the PI
parametric interval. The part of the spiral corresponding to Ipr fu:) will be dent;ted
Cpr(x). Also, inside the PI there exists 5 = 3(x) such that the plane through y(i)
and parallel to (), §i(3), contains z. e
Fix x € U. It is clear that any plane through z intersects Cri(x) at least at one

point. Introduce the following sets:
. < g Algebraic Recenstruction Techniques (ART) for
Crit(z) ={€ € R®\ 0 : II(x, £) contains y(su(x)), u(s:(z)) or Tl . . ~ a: . . ’ )
TT(,£) s tangent, to Crr(a)} U {0}, iree-dimensional Electron Microscopy and X-ray
Zi(z) ={¢ € R? : € ¢ Crit(z) and [I{z, £) N Cp; () contains one point}, Photogra ph\'
Sa(z) =R*\ {Z1(z) U Crit(z)}. .

(2.5)

Bay construction, the sets Crit(z),=y,3(z) are pairwise disjoint, their union is all of RiCHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN
R¥, Crit(x) is closed and has Lebesgue measure zero, and =) g(z) are open,
Denaote i
Center for Theoretical Biolog)

1B(s,z) x §(s)] x B(s,x)
118(3,2) % §2)] x A, ) and

?(y cn;\sm("u;.-ti:;\. e1(s,z) is a unit vector in the plane through y(s) and is spanned by
Bls, ), 3(s). Moreover, ey (s, x) is perpendicular to d(s, z). For convenience here and ) » University of New { ( : T 22 LS
1t S o610 P A A s s il State University of New York at Buffalo, Amherst, N.Y. 14226, U.S.A.
below) and their lineay hinatl s if they are attached to y(s).

)}, ind Stan € Ip(T), Stan # s, such that the (Received 12 August 1970)

pngent to Cpr(z) at y(seea). This is equivalent ‘

(2.6) e(s,z) =
Department of Computer Science,

PI segment ; We give a new method for direct reconstruction of three-dimensional
vaD) - (8tan) = O, Stan # 5. objects from a few electron micrographs taken at angles which need not
on sian € Tpz(s) to (2.7) is shown below (see exceed a range of 60 degrees. The method works for totally asymmetric
éoAlsfo. we will show below (see (2.35) and the objects, and requires little computer time or storage. It is also applicable

with respect to s on (sy(z),s(2)) \ {5(z)} to X-ray photography, and may greatly reduce the exposure compared

by settin, .
sh=S4/%) ) 8 to current methods of body-section radiography.

si(x), 5= sp(z),
(2.8) Stan(s,2) = { (), 8= g?:,;‘]J
s5(2), &= s(x).

Once 844y, = Stan($, z) has been found, denote similarly to (2.6)
_1B(s, ) x ©] x B(s,x)
l1A(s,2) % ©] x B(s, @)’

(2.9)
o= { E0(S = Sean (3, 2))B(stam, ), 5 € (s1(x), 5:(x)) \ (3(2)},
9(Stan), 8 € {sp(x), 5(z), 8:(z))}.

ez(s,z):

By construction, €2(s, ) is a unit vector in the plane through 2, y(s) and is a tangent
to O_p, () a‘.t.y(am,,), In addition, e,(s, z) is perpendicular to B(s,z). Using (2.8) and
the inegualities sy, (s, 2) > 3(z) if 5 < 3(z), stan(s,z) < 3(z) if s > #(z) (see (2.39)
below), we conclude that ey(s, =) is continnous with respect to s on [ss(x), se(2)).




Exact Cone Beam Reconstruction
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The final ingredient is an auxiliary cutoff function. Let (o} € C*(52) be
even (i.e, n{«) = n(—a)) and equal zero in a neighborhood of

Q(x) := ( o3 (S,x)) uCrit{x). {2.5) . . o . .
k.re&i{x) . Algebraic Recenstruction Techniques (ART) for
Clearly, n{«) depends on x. Since the role of n is only temporary, the depen- TT]I“L’C-diﬂIL’"SiOUﬂ' Electron N“CI'OSCOD_\' and ,\'-ray
dence of 17 on x is omitted for simplicity. Ph aphv
Now, when all the ingredients are available, we derive the inversion formula. Ot()gl'd p .‘
Define
1 1, RicHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN
(@0 )00 i = gy [ 520 ' ’
i . (2.6)
xai‘U Ve, qu(y(s).e)de}ls::,nm)dm. Center for Theoretical Biolog)
5 LJoer

Here, Vg oD y((s5),0) denotes the derivative of Dy with respect to © along o and

] Department of Computer Science,
VoD, .8) = =D, N1-t2@+ta) |0, @€’ 2.7 . = o ; : .
(VouDr} (¥().0) = 7 #(v4s) +to)leo, O€ &1 State University of New York at Buffalo, Amherst, N. Y. 14226, U.S.A.

Using G 's formula and the change of variables p — s defined by p =

(Received 12 August 1970)
nals, (2.8) We give a new method for direct reconstruction of three-dimensional
b F (0,2 lpmeytapmens objects from a few electron micrographs taken at angles which need not
exceed a range of 60 degrees. The method works for totally asymmetric
Hon transform of f. Equations (2.6) and (2.8) make objects, and requires little computer time or storage. It is also applicable
V‘Zu;:dted away from zero on suppn. From (2.8) and to X-ray photography, and may greatly reduce the exposure compared

= ?Z:ﬁ J'H, n (%)i(&)e FxXgE, (2.9)

; .
Mo, 45 3 by { J'.(L VB.aDI(J’(S),@)de}ls'SJ
T e

Bisxy -

3

to current methods of body-section radiography.

[.. VoaeD;(3(@),)l-sdE. 210
Ficus 2.2, Construction of ny. o q
The Teason for replacing 9/8s by (8/2q)(+)|4-s is that in what follows, para-
metrization of ® depend on 5. The derivative (2/2g) (-) |5-s emphasizes the fact
that we first differentiate D¢ (v (5), @) with respect to s, and then Integrate the
result with respect to 8.

Using (2.10), rewrite (2.6) as follows:

Lo nis;,x, &) %
(Byf)(x) = ~F J ’;ngm'a)nm)dﬂ' (2.11)




Reconstruction from Truncated Data

Analytical tomographic reconstruction Iterative tomographic reconstruction

J. theor. Biol. (1970) 29, 471-48]

F Noo et al

The fan-beam DBP formula is derived in the same way as the fan-beam FBP is usually
presented: a change of coordinates (equation (25)) is invoked in the parallel FBP formula. A
vital property which allows the final FBP formulation in fan-beam mode is the fact that the
ramp filter is homogencous of degree —2. Fortunately, we can describe the derivative using a
filtering kernel 8'ir),

Algebraic Recenstruction Techniques (ART) for
e g el i omegsmooun f dagros -3 i = WO B Three-dimensional Electron Microscopy and X-ray
We must begin by writing the parallel DBP formula for a 2 scan, PhOtO ra h‘,
by(x) = [1 Pig.x-a)dg = : [J P, x - a) sgn(sing) dg g p .
) o : -
and usc (27) to match the form of the conventional FBP, RicHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN

, a o P —_—
P@.r)=—p@.r)= f pid.r' W' —rydr
or =

by(x) ;[r [ plg.r)d(x -a —r') sgnising) dr’ dg. 29)
Now the change of variables (equation (25)) is carried out, and the usual manipulations (see, Center for Theoretical Biolog)
c.g., Kak and ‘il:mc\ ll‘)’i"l) 1o arrive at the fan-beam formula
1 m D o g0
bo(x) 3 — (. u)d(u u)sgn(mn(ﬂ + arctan
C

s v D +ut

5
1 (= RD d D p
3[R L e sen(sin s+ )

and

))dudﬂ : 1

; Department of Computer Science,

) State University of New York at Buffalo, Amherst, N. Y. 14226, U.S.A.
lu.

(Received 12 August 1970)

xacosk
FNooetal  [sured perpendicularly from the detector
{.ef;:::f.nffrfh:.t:ﬁ!‘ufﬂf‘:T.'..t?c, \\'L.‘ give a new method for direct reconstruction of three-dimensional
objects from a few electron micrographs taken at angles which need not
exceed a range of 60 degrees. The method works for totally asymmetric
objects, and requires little computer time or storage. It is also applicable
to X-ray photography, and may greatly reduce the exposure compared
to current methods of body-section radiography.

ing — xacosk).

path of equations (28) to (30), departing

8))dé

(E+:ln‘l.ln%7ﬁ))= & (M)

PR

where T and u® arc given in cquations (31) and (32).

In practice, cquation (34) is difficult to implement accurately duc to the discontinuity
caused by the signum function in the argument of the derivative. By applying the product rule,
the derivative of the discontinuity can be avoided. We show in the appendix that equation (34)
Icads to the following form which is more suitable for implcmcnlmm.

D
by(x) = l[ er s:n(xm( +.uuan— 9) d“ I‘_ﬁ’) — PlE.u) de

-
§1.uj) P ud)
P o L L L
lx—wll  llx—w2ll




Image Reconstruction within ROls
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AR =fix.858), B =gAx.8,.8). 21

where 7 and x. are related through Eq. (3). In terms of
Plit,v4,5) the backprojection image on a chord line speci-
fied by 5, and s, is

" agn[- B-8.(s)] @
8o(X,8,,8,)= I ds———————P(u;,v,%)
¥ F(x,) = Fols)| as .

(22)

The signum factor in the integral derives from the exten-
sion of the data function in Eq. (17). For 7 on the chord
line, the kernel K(7,7') in Eq. (15) can be rewritten as

K@) du, sgn(vJexp[2mjvlx,. - x)&y,)8(z,)
"
1
———ay)Az)), (23)
(X =)
where 7' < R®, and v, denotes the spatial frequency with

respect to x,.
Applying Eq. (23) to Eq. (14) yields

felxes5,8) = i
e

where z_cR. Therefore, the image f,ix,.s,.s;) on the
chord line is the Hilbert transform, along the chord line,

where r_cR, and parameters xr, and x_, satisfy
%, & (==,%,)] and x4 & [%,5,%), respectively. We refer to
[X.1,%.2] as the backprojection segment. We obtained the
last part of Eq. (25) by observing that f.(x.,5,,55)=0 for
x. ¢ [x,),%,5]

The result in Eq. (25) represents a Hilbert transform on

felXes85.88) =

XX, 5088} + c‘]. (26)

], the relationship between x, and 7 is
(3), and the constant C is given by

(::ZWJ [olxe,Sa,885)dx. = 2aD(Folsa),8).  (2T)
Because the second term in Eq. (26) is only a constant
that can be readily obtained directly from data, the com-
putation load required for reconstructing the image on a

OEJ
vy
!

i/

ly determined by that for computing the

l‘hzfl}'orm of the first term, Eq. (26) can be
1

-gnlx!,s,.55) + 2mD(Fols,)e,) |,

(28)

= [e(x)y (xe2 e = Xe1)Be(X;18a,58),
(29)

object !I‘]ppoﬂ

Dingram illustrating the support segment (x.
%z} and backprojection segment (x, & [x,y %.2)).

and IL(x)=1 if x{ & [x.1,%.z] and 0 if x{ ¢ [x.1,%.]. Unlike
the first term the Hilbert transform over a finite in-
terval) in Eq. (26) that does not appear to represent ex-
plicitly a shift-invariant filtration on the x_ axis, Eq. (28)
indicates explicitly a shift-invariant filtering (i.e., the Hil-
bert transform) over the entire x/ axis. Such a change
may have practical significance because the Hilbert trans-
form can now be caleulated efficiently by use of the fast-
Fourier-transform (FFT) technique.

It can be observed in Eq. (29) that the image on the
chord can be obtained exactly from knowledge of the back-
projection image on a support segment, specified by

Iterative tomographic reconstruction

J. theor. Biol. (1970) 29, 471-48]

Algebraic Recenstruction Techniques (ART) for
Three-dimensional Electron Microscopy and X-ray
Photography

RicHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN

Center for Theoretical Biolog)
and

Department of Computer Science,
State University of New York at Buffalo, Amherst, N. Y. 14226, U.S.A.

(Received 12 August 1970)

We give a new method for direct reconstruction of three-dimensional
objects from a few electron micrographs taken at angles which need not
exceed a range of 60 degrees. The method works for totally asymmetric
objects, and requires little computer time or storage. It is also applicable
to X-ray photography, and may greatly reduce the exposure compared
to current methods of body-section radiography.

dkfz.



Image Reconstruction within ROls

Analytical tomographic reconstruction Iterative tomographic reconstruction

J. theor. Biol. (1970) 29, 471-48]

Algebraic Reconstruction Techniques (ART) for
Three-dimensional Electron Microscopy and X-ray
Circle plus Line [42] Photography

RicHARD GORDON, ROBERT BENDER AND GABOR T. HERMAN

Center for Theoretical Biolog)

and

Department of Computer Science,
State University of New York at Buffalo, Amherst, N.Y. 14226, U.S.A.

(Received 12 August 1970)

We give a new method for direct reconstruction of three-dimensional
objects from a few electron micrographs taken at angles which need not
exceed a range of 60 degrees. The method works for totally asymmetric
objects, and requires little computer time or storage. It is also applicable
to X-ray photography, and may greatly reduce the exposure compared
to current methods of body-section radiography.

Umbrella [49] Two ellipses [52]

dkfz.



Model

(ajn + Awn)Q — Y
2

. ,
Ty = 2T AT, + 2C, = Y

mi—k?anxn

Update
equation




0.5(3 —22)/z,

o = 1.

r1 = 2.

To = 1.79

rs3 = 1.73214
rs = 1.73205
xs = 1.73205
xeg = 1.73205
xr = 1.73205
rg = 1.73205

0.4(3 —z2)/z,

Influence of Update Equation and Model

0.5(3 —z=1)/z,

o = 1.

r1 = 1.8

xo = 1.746067
x3 = 1.73502
rqs = 1.73265
rs = 1.73217
re = 1.73207
x7 = 1.732006
rg = 1.73205

xo = 1.

r1 = 2.

ro = 1.67823
r3 = 1.68833
rqs = 1.68723
rs = 1.68734
re = 1.68733
r7 = 1.68733
rgs = 1.68733




Forward Projection

CT System Matrix

R-f=p

Radon or x-ray image to be measured
transform reconstructed rawdata

TlM\ /f1\

T2 M f2

TI\;M) \fM/




Kaczmarz's Method

R-f=p

N x M M x 1 N x 1

/:;\

7| =1

o/

rn'.f:pn




Kaczmarz's Method (2)

« Successively solve r,, - f = p,
 To do so, project onto the hyperplanes

o (f +Arn) =y
A=p,—7Tn-f
Trnew = F + Ary
Foow =F + 70 (pn =70 f)
* Repeat until some convergence criterion is reached
forr=F,+rn(pn =70 £,)




Kaczmarz‘s Method (3)




Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique
(ART)

fy+1:fy+rn(pn_rn'fv)

T p_R.fy
S

fy+1:fu—|_




Kaczmarz's Method = ART

T -




Kaczmarz's Method = ART




apply inverse model

apply forward model
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Flavours of lterative Reconstruction

p_Rfr/

- ART .=f,+R".
f+1 f R2-1

1 RTp_Rfy

. SART —
f]/—f—l fi/_l_RTl R]_

RT . (e~ R-1))
R'. (e—P)

+ MLEM f,, = f,

RT . (e_R'fu R e_p)

+0sC  fon=Ffot o (c RI.R-T,)

« and hundreds more ...




Cost Functions

- General expression: f = arg m}n C(f)

- Examples: C(f) = (R-f—P)2
C(f)=W-(R-f-p)

2

C(f)= (W-(R-f—p)) +BP(f)

statistical additional
properties penalties
and
preconditioning




Linear PWLS

PWLS Cf)=R-f-p)" W-(R-f-p)+B8f" -Q-f
Gradient VCO(f)cR'-W.-(R-f—p)+8Q-f
Gradient update for1=f, —a,VC(f,)
At convergence VC(f_..) =0

Fixed point foo = (RT'W'R+,BQ)_1 R' - W-p

A

Assume there exists j‘ such that R - f = p. Then everything reduces to a
shift variant image filter:

In case of shift invariance we can convert to Fourier domain:
high-pass

low-pass




Non-Linear PWLS

PWLS C(f)=(R-f-p)' W -(R-f—p)+BP(f)
| Gradient VC(f)O(RT'W‘(R'f_p)_'_%Q<f>.f
Gradient update Jor1=Ffo — oz,,VC’(fl,)
At convergence VC(f.) =0
Fixed point fo=(R" W -R+BQ(f.) ' R" W-p

Assume there exists j‘ such that R - j? — p. Then everything reduces to a
shift variant image filter:

foo=(R'-W-R+5Q(f.) " R W R-f




lterative Reconstruction: Parameters

« Image/object representation

— Pixel centers
— Pixel area f(ﬂj, y) — Z fmb(il? — Im,Y — ym)
— Blobs m
— Sampling density (pixel size, pixel locations, ...)
Forward model (forward projection)
Joseph-type, Bresenham-type, distance-driven-type, ...
Needle beam (infinitely thin ray), many needle beams per ray, ...
Beam shape (varying beam cross-section, angular blurring, ...)

Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, ...)

Objective function, update equation
— Statistical model (Gaussian, Poisson, shifted Poisson, ...)

N ... _ . 2
Regularisation (edge-preserving, ...) C(f) — (R . .f . p)

— Artifact reduction

Inverse model (backprojection)
— Transpose of forward model
— Pixel-driven backprojection
— Filtered backprojection




Image Representation




Image Representation




Image Representation




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Image Representation and
Forward Model are Linked!

Joseph’s forward projector




Objective Function: Gau3 Model

« Assume that the attenuation is Gaussian-distributed
‘C’(A) :N(O',T . f)
1 2 2
e P(A=a)= e 20" W/ with y=rf.

2o

« Consequently, the likelihood for all N measured
signalsis (un, =7, - f):

A=a,f)= HP

- Before maximizing take the log, penalize roughness,

D> ("””(;“”)2 ~BR(f)

and then find the image fthat maximizes L.




* This leads us to minimizing
(R-f—a)"-D- (R f—a)

which means solving
R" D (R f—a)=0

* This must be done numerically (e.g. Jacobi method)
and the solutions are often of type

fo1 = F, +diag(u) - R - diag(v) - (a — R f,)




Update Equation: Gau3 Model

_Rfr/
R?-1

 ART fi/—l—lzfu—l_RT'p

1 — R
= RTp fz/
R' -1 R-1

« SART f,1=7F .+

 and many more ...




Objective Function: Poisson Model

« Assume that the intensities are Poisson-distributed
L(I) = P(Ipe~ " T)

10!

which means P(I = i) =~/ with = Ioe " 7.
1.
« Consequently, the likelihood for all N measured
signals is (u,, = Ipe” '»° f):

In
: : Pn
- Before maximizing take the log, penalize roughness,

Z(Zn lnﬂn _ ﬂn) _ BR(JC)

n

and then find the image fthat maximizes L.




Update Equation: Poisson Model

R'. (e_R'fv)
R'. (e—P)

+ MLEM  f,., = f,

RT . (e_R'fu S e_p)
- OSC fooa=1,+71, o

: (e—R-fI,R. fy)

 and many more ...




Native OSC Converges Slowly
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What Makes Iterative Recon Attractive?

No need to come find an analytical solution
Works for all geometries with only small adaptations
Allows to model any effect

Allows to incorporate prior knowledge
— hoise properties (quantum noise, electronic noise, noise texture, ...)
— prior scans (e.g. planning CT, full scan data, ...)
— Iimage properties such as smoothness, edges (e.g. minimum TV)

Handles missing data implicitly (but not necessarily
better)

Phase-correlated Feldkamp High dimensional TV minimization’

[‘ A, q“_4 .‘. A
oy o
ok o Ry v
:.-'.. & bt -
L B -
-
»
yok

L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. KachelrieB, Phys. Med. Biol. 57, Jan. 2012 ¢ Z,




Downsides

Classical iterative recon is slow!
Classical iterative recon cannot do small FOVs.
There are many open parameters.
The reconstruction is non-linear.
Can we trust the images?




Ordered Subsets

Divide one iteration into S sub-iterations.
Each of these S subsets covers N/S projections.

During one iteration all subsets and therefore all
projections are used exactly once.

Per iteration the volume is updated S times (once per
sub-iteration).

An up to S-fold speed-up can be observed.




Ordered Subsets
lllustration for N = 32 Projections

Conventional procedure without subets (S=1)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with S = 8 sub-iterations

01 23 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31




Ordered Subsets

262/
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Np/ojections = 32, Ordered Subsets: Ng et = 8



Sequence Can be Generated Using
Simple Bit Reversal

16

8
24

4
20
12
28

2
18
10
26

6
22
14
30

1
17

9
25

5
21
13
29

K]
19
11
27

.
23
15
31

VoJdJoubdbWDNDR




Using Ordered Subsets Makes it Faster!

S =1 (no subsets) S = 32 (ordered subsets)

-

-

C =0 HU, W= 1000 HU




Image Updates

S =1 (no subsets) S = 32 (ordered subsets)

C =0 HU, W= 1000 HU




Analytical Reconstruction

1. Problem p(¥, &) = /dacdy f(x,y)d(xcost + ysing — &)

T

2. Solution flx,y) :/dﬁp(ﬁ, §) * k(&)

0

E=x cos ¥4y sin ¥

3. Discretisation f=R'" -K-p=R'. (k *xp)

Classical lterative Reconstruction

1. Problem p(, &) = /da:dy f(z,y)d(xcost + ysin — &)

2. Discretisation p=R-f

3. Update equation f,,+1 f +




Iterative Image Reconstruction in CT

Sinogram- and image restoration (not truly iterative)

Fully iterative (GE‘s Veo/MBIR only, but very slow,
now being replaced by ASIR-V)

Hybrid technologies (only one or two full iterations,
including preconditioning) are the way to go.

Compressed sensing type image reconstruction is
not used commercially.




lterative != lterative

* In many cases artifact correction is iterative
— Higher order beam hardening correction
— Cone-beam artifact correction
— Scatter correction

* Practical “iterative reconstruction” approaches
— often use empirical solutions
— combine iterative with analytical reconstruction

— combine iterative or analytical reconstruction with image
restoration

Phase-correlated Feldkamp Low dose phase-correlated (LDPC) recon’

e 12 AE N
Y. 1 /..'\Q:‘

1S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrie3, MedPhys 38(3), 2011 dkflo




lterative Reconstruction

Aim: less artifacts, lower noise, lower dose

Iterative reconstruction
— Reconstruct an image.
— Regularize the image.
— Does the image correspond to the rawdata?
— If not, reconstruct a correction image and continue.

SPECT + PET are iterative for a long time!

CT product implementations
— AIDR (adaptive iterative dose reduction, Toshiba)
— ASIR (adaptive statistical iterative reconstruction, GE)
— iDose (Philips)
— IMR (iterative model reconstruction, Philips)
— IRIS (image reconstruction in image space, Siemens) '
— VEO, MBIR (model-based iterative reconstruction, GE) |

— SAFIRE, ADMIRE (advanced model-based iterative reconstruction,
Siemens)




apply inverse model

e —

regularize regularize

rawdata image
A A

t

apply forward model |¢

Rawdata regularization: adaptive filtering', precorrections, filtering of
update sinograms...

Inverse model: backprojection (R") or filtered backprojection (R1). In
clinical CT, where the data are of high fidelity and nearly complete, one
would prefer filtered backprojection to increase convergence speed.
Image regularization: edge-preserving filtering. It may model physical
noise effects (amplitude, direction, correlations, ...). It may reduce noise
while preserving edges. It may include empirical corrections.

Forward model (R,,,): Models physical effects. It can reduce beam
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, ...

. KachelrieB3 et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001 dkflo




>| apply inverse model |

Conventional FBP with rawdata denoising (all vendors)

>| apply inverse model |

| apply forward model |e

Veo/MBIR (Ge)

>| apply inverse model |

—

o

regularize i
L

image
N "

ASIR (Ge), AIDR3D (Toshiba), IRIS (Siemens), iDose (Philips)
SnapShot Freeze (GE), iTRIM (Siemens)

>| apply inverse model |

regularize
image
N

{ apply forward model |e

SAFIRE, ADMIRE (Siemens)




Plain FBP Siemens Standard IRIS VA34 SAFIRE VA40

) . -
. ! . * - +
W

- .

e

Db

6 =123 HU

apply inverse model apply inverse model apply inverse model apply inverse model

regu’” _e regul> s Y regularize regulz o i regularize regularize 5 regularize regularize
r  aata I ge o rawdata oge - rawdata image = rawdata image

applyf"“ﬂl(—l app\vfﬂ"ﬂk—, ﬂpplyfn“ﬂk—, apply forward model

CT images provided by Siemens Healthcare, Forchheim, Germany dkflo




Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA. dkflo




Dose
reduction
values
iterative
compared to
analytical

image
reconstruction
claimed
by clinical
papers 2012
and earlier.

M. Kachelrie3, Current Cardiovascular Imaging Reports 6:268—281, 2013.

GE Philips Siemens Toshiba
Type Reference ASIR MBIR/Veo iDose IMR IRIS SAFIRE AIDR | AIDR3D
Cardiac [33] 38%*
Cardiac (36] >50%
Cardiac [37] 56%
Cardiac [29] 55%
Cardiac [25] 30%-45%*
Cardiac [20] 27%
Cardiac [38] 250%
Cardiac [34] 40%-51%
Cardiac [30] 52%*
Cardiac [35] 62%
Cardiac [45] 22%
Cardiac [39] 50%
Cardiac [46] 50%
Cardiac [21] 23% 60%
Cardiac [22] 29%
Cardiac [23] 36%
Cardiac (28] 29%
Abdominal/Chest [79] 32%-65%
Abdominal/Chest [80] 15%*
Abdominal/Chest [81] 42%
Abdominal/Chest [82] 80%-90%
Abdominal/Chest [83] 36%*
Abdominal/Chest [77] 38%-46%
Abdominal/Chest [40] 250%
Abdominal/Chest [84] >30%
Abdominal/Chest [85] 64%
Abdominal/Chest [86] 50%
Abdominal/Chest [87] 52%
Abdominal/Chest [88] 28%
Abdominal/Chest [24] 50%
Abdominal/Chest (89] 35%
Abdominal/Chest [90] 20%-80%*
Abdominal/Chest [91] 23%-66%
Abdominal/Chest [92] 40%
Abdominal/Chest [93] 50%
Abdominal/Chest [94) 50%
Abdominal/Chest [95] 34%
Abdominal/Chest [96] 41%
Abdominal/Chest [97] 25%
Abdominal/Chest (98] 38%
Abdominal/Chest [27] 75%
Head [99] 20%
Head [100] 60%
Head [101] 31%
Head [102] 26%
REVIEW (Cardiac) [17] 40%-50% 60%-70% 40%-50%
REVIEW (General) [16] 23%-76% 50%-76% 20%-60% 50% 52%
REVIEW (Cardiac) [18] 40% 30%-40%

dkfz.



Motion Management for IGRT

Linear Accelerator

—
A

kV Source ) ?

\

)etector




Retrospective Gating

Amplitude End-Inhale Without gating (3D): With gating (4D):
00} A Motion artifacts Sparse-view artifacts

0%T

50% 0% 50% 0% 50% 0% 50% 0% 50% 0% Time
Projection angle

Acquisition angle

Angular spacing of
projection bins

Measured projections
assigned to one phase bin

VARJAN dkfz.




Image Registration

Target image

VARTAN

medical systems
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Motion Compensation (MoCo)

: : Straight backprojection
« Use all projection data for each )

phase to be reconstructed

— Even those of other respiratory phase bins
(100 % dose usage)

— Compensate for motion applying
motion vector fields (MVFs)

— In our case MVFs are estimated from
conventional gated reconstructions

e Use MVFs during Warped backprojection
image reconstruction /

— Backproject sparse data along straight
lines, then warp with respect to the MVFs

— Computational efficiency

» Corresponds to backprojection along
deformed lines




A Standard Motion Estimation and
Compensation Approach (sMoCo)

 Motion estimation via et e shives
standard 3D-3D registration T

- Has to be repeated for each
reconstructed phase

« Streak artifacts from gated reconstructions propagate
into sMoCo results

Li, Koong, and Xing, “Enhanced 4D cone-beam CT with inter-phase motion model,” dkf
Med. Phys. 51(9), 36883695 (2007). e




A Cyclic Motion Estimation and
Compensation Approach (cMoCo)

* Motion estimation only between adjacent phases
— All other MVFs given by concatenation

Displacement curve
of a fictitious pixel
over complete
respiratory cycle

=== W/0 temporal constraints
- with temporal constraints

 Incorporate additional knowledge
— A priori knowledge of quasi periodic breathing pattern
— Non-cyclic motion is penalized
— Error propagation due to concatenation is reduced

VA Ri AN Brehm, Paysan, Oelhafen, Kunz, and KachelrieB, “Self-adapting cyclic registration for motion- dkf
medical svetems COMpensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12), 7603-7618 (2012). z.



Artifact Model-Based MoCo (aMoCo)

I’. ;,5~'.(.‘ | Fa g
W el

‘Gated 4D CBCT

VA Ri AN Brehm, Paysan, Oelhafen, and KachelrieB, “Artifact-resistant motion estimation with a patient-specific
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913 (2013).

g

medical systems




Propagation of Respiratory Motion

* Respiratory motion propagates into 3D
reconstruction even if the image is stationary.

« Perform segmentation before forward projection.

Artifact Image:
] =) —1
Xpe (X (X7'p)) Xpe(X(Segm. Im.))




Motion Estimation using an

Patient-Specific Artifact Model

Cyclic Reqistration

\

Motion Vector Fields cMoCo:
(induced by breathing Cyclic Motion
and artifacts) Compensation

Motion Vector Fields acMoCo:
(breathing only) Artifact Model-Based

Motion Compensation

4D rtifact Iages Motion Vector Fields

(induced by artifacts only) dk‘fz.

Gating and Independent
Reconstruction

Simulate Motionless
Projection Data

> TN

Measured Data

Gated 4D CBCT

Segmented Image

Forward Projections




Patient Data — Results

3D CBCT Gated 4D CBCT sMoCo acMoCo
Standard Conventional Standard Motion Artifact Model-Based
Phase-Correlated Compensation Motion Compensation

C=-200 HU, W= 1400 HU

medical systems




Iterative Image Reconstruction in MR

For cartesian k-space sampling, a simple inverse FFT
usually suffices for image reconstruction.

Therefore, iterative reconstruction methods are
mainly needed for non-cartesian k-space sampling.

Methods are similar to CT, but other difficulties arise,
e.g. in parallel imaging with multiple coils, coil
sensitivity profiles have to be considered, which are
In general unknown and have to be estimated.

Typically, cost functions consist of a rawdata fidelity
term and regularization terms in a sparsity
transformed space, such as TV, wavelets, ..., which
are optimized in an alternating manner.




MR
K-Space Sampling Scheme

Simulation Measurement
160 radial spokes per slice 480 radial spokes per slice
3D encoded radial stack-of-stars sequence

radial sampling in transversal radial sampling in coronal or
plane sagittal plane

acquisition time: 38 s acquisition time: 57 —69 s

data sorted retrospectively into 20 overlapping motion
phases (10% width of respiratory cycle, 5% steps)

reordered interleaved angle  interleaved Golden angle
increment increment




Motion Estimation Framework
I ]

MR gated gridding MR HDTV

Sap AN S
3 ,:;- o ,':‘ \ =
SIS e e X A

%\ AR ‘",&

Demons artifact model- Demons cyclic 3D-2D cyclic
based registration'? registration’ registration?
(acMoCo) (cMoCo) (3D-2D cMoCo)

RT tracking MR MoCo

el = Motion Vector Fields (MVFs) =

5%

[1] Brehm, Paysan, Oelhafen, Kuntz, KachelrieB. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy. Med. Phys. 2012.
[2] Brehm, Paysan, Oelhafen, KachelrieB. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med. Phys. 2013. dkfz
[3] Flach, Brehm, Sawall, KachelrieB. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy. Phys. Med. Biol. 2014. [ ]




Deformable 3D-3D Registration
(Demons Algorithm)

Deform prior image p(r) to match the target image ¢(r).

Calculate forces based on sum of squared differences in
image domain:

L(t —po (Id + u®))(V,t + Vp(po (Id + u®)))

(k) _
v = —

Smooth velocity vector field +*) with a Gaussian kernel.
Then update displacement vector field
wFTD) = p®) 4B o (1d 4 v¥)

and smooth with another Gaussian kernel.
Do a few (about 10) iterations until convergence.

Thirion. Image matching as a diffusion process: An analogy with
Maxwell’s demons. Medical Image Analysis 2(3):243-260, 1998.




Deformable 3D-2D Registration

- Deform prior image p(7) to match the rawdata ¢:
— Displacement vector field (DVF): w(r) = (u; (1), ua(r), us(r)) T
— Deformed image: p.(r) = p(r +u(r)) = (po (Id + u))(r)
— Matching criterion: S[u] = ||[Xp(r + u(r)) — ¢||3 (rawdata fidelity)
— Velocity vector field: v(r) = (v1(r), va(r), v3(r)) " = Opu(r)
— Smoothness of a vector field w(r) = (wl(r) wo (1), w3(r))! achieved

by minimizing
Zd 1 Z 'rwd rwd( ))

— Diffusive regularlzatlon R|u]
— Fluid regularization: R[v| = R[0,u]

* Determine the DVF u by minimizing the following cost
function:

Clu] = S|u] + BR[u] + yR|0u]

Flach, Brehm, Sawall, KachelrieB. Deformable 3D-2D registration for CT and its dkf
application to low dose tomographic fluoroscopy. Phys. Med. Biol. 59:7865-7887, 2014. Z.




MR
Artifact Model-Based Estimation of MVFs?

simulate gating and cyclic
motionless data reconstruction registration’

= “d MVFs
» & 1 | (induced by
' ’ breathing
- ¢Sl and artifacts)

measured data 4D gated R
D »

MVFs 4D MoCo PET
(corrected)

segmented MR

3

MVFs
(induced by
] artifacts only)

forward transform 4D artifact iages

[1] Brehm, Paysan, Oelhafen, Kuntz, KachelrieB. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy. Med. Phys. 2012.
[2] Brehm, Paysan, Oelhafen, KachelrieB. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med. Phys. 2013. dk z.



Backproject-then-Warp MoCo

 MVFs have to be calculated by one of the three options
(acMoCo, cMoCo or 3D-2D cMoCo) in advance.

- A gated gridding reconstruction of the MR rawdata is
performed.

 MoCo backproject-then-warp of gate g:

imag_e of gate ¢

, g gate indices
9 G Z g’ |—>g ; total number of gates
.o backward warping operation
mapping gate g’ to g

“warp” gated images




Iterative Reconstruction (HDTV)!~2

Cost function
C = |IXf —pll3 + &l fll v, xyst

X

f

p: rawdata
: Y S Y : o strength

rawdata fidelity  total variation | - | +v, ' total variation

Fourier transform
image

The rawdata fidelity and the spatial and temporal
smoothness of the image are optimized in an alternating
manner

Instead of X" we precondition and use X, i.e. gridding
followed by inverse Cartesian Fourier transform.

The cost function is optimized for the complete 4D
volume including all motion phases

1 Ritschl, Bergner, Fleischmann, KachelrieB. Improved total variation-based CT image reconstruction applied to clinical data. Phys. Med. Biol. 2011. (dkf
2 Ritschl, Sawall, Knaup, Hess, KachelrieB. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys. Med. Biol. 2 z.




MoCo lterative Reconstruction (MoCo HDTYV)

 MVFs have to be calculated by one of the three options
(acMoCo, cMoCo or 3D-2D cMoCo) in advance

* The same cost function as for HDTV is optimized, but in
the rawdata step, the image update u, of gate g is
calculated using backproject- then-warp

Ug:
g9, 9: gate indices
g = G Z T, g'rgt G total number of gates
. backward warpmg operation
mapping gate g’ to g

“warp” update |mages

image update of gate g




Results of Simulated Data

gated gridding HDTV MoCo ground truth
MVF from 3D-2D cMoCo

160 radial spokes per slice, 20 overlapping phases, acquisition time: 38 s dkfz.




Results of Measured Data (Volunteer)

gated gridding HDTV MoCo MoCo-HDTV
MVF from cMoCo MVF from cMoCo




Results of Measured Data (Volunteer)

gated gridding HDTV MoCo MoCo-HDTV
(1925 spokes: 229 s) MVF from cMoCo MVF from cMoCo

480 radial spokes per slice, 20 overlapping phases, acquisition time: 57 s




Results of Measured Data (Patient)

gated gridding HDTV MoCo MoCo-HDTV
MVF from cMoCo MVF from cMoCo

480 radial spokes per slice, 20 overlapping phases, acquisition time:




Results of Measured Data (Patient)

gated gridding iIGRASP MoCo MoCo-HDTV
(2035 spokes: 292 s) (2035 spokes: 292 s) MVF from cMoCo MVF from cMoCo

480 radial spokes per slice, 20 overlapping phases, acquisition time:




Iterative Image Reconstruction in PET

« Algebraic methods
— Do not correctly account for noise in the measured data.
— Example
» Algebraic reconstruction technique (ART).

- Statistical methods
— Take into account the Poisson nature of the measured data.
— Maximume-likelihood (ML) approach
» Maximume-likelihood expectation maximization (MLEM).
» Ordered subset expectation maximization (OSEM).
— Maximum a posteriori (MAP) approach
» One-step-late (OSL) algorithm (= penalized MLEM).




Particle Decay

* Let Mj; denote the probability that a photon emitted
from plxel i contributes to LOR j. M; is affected by
— System geometry
— Attenuation
— Scatter
— Detector inefficiencies

- The probablllty p; for a photon emitted from pixel
within time mterval [t, t+Af] contributes to LOR jis
then given by

pzj — Mij(e_”t — G_M(H_At)) ~ Mije_“t,uAt

with decay constant p.




Poisson Statistics

 The number of decays K; resulting from n; unstable
particles Iin pixel 7/ and contrlbutlng to LOR Jis
binomial distributed as (

T;

I )pfj(l — pij)"i "

* For large n;and small p;, the binomial distribution
can be approxmated by a Poisson distribution

P(K;; = k) =

~ Ak

i, kY
P(K;j=k)=e i3]

with mean value /%w = sy = g Ml e M At
= A M;;
and activity image \; = n;e #'uAt




Probability Density Function (PDF)

 The measurement along each LOR jis the sum
Py =), Ky
which also follows a Poisson distribution

D; = Zﬁz‘j = Z)\z'Mz‘j

P(p|A) = HP i = Pj)

L(p|X) = Z (— pj +p;Inp;) + rest

J




Bayesian Approach

Find image )\ maximizing the probability P(\|p) given
the projection data p.

Bayes rule:

Prior term

/
P(Alp) = P(p[A)P(X)

P (p )<\ Constant

Maximum-a-posteriori (MAP) approach
— Maximize the posterior P(\|p)

Maximum-likelihood (ML) approach
— Maximize the likelihood P(p|\)
— Assumes P(\) = const, i.e., all images have equal probability




Maximume-Likelihood (ML) Approach

« Bayes rule:
y P(Alp) = P(P}D?LI)D(A)

« Without prior, the problem reduces to maximizing

— P ,\’pj

P(p‘)\) — Hj P(pj‘/\) — Hj - pjl!jj <— Poisson

distribution

with expected projection data p,;(\) = > . \; M;;.

* Instead of the likelihood, it is more convenient to
maximize the log-likelihood

L(p|A) =In P(p|A) = >, (—=pj + pjInp;) + rest




Maximum-Likelihood Expectation
Maximization (MLEM)

« Maximization of the expectation value of the log-
likelihood yields the update equation

1 D
AP = () > J

- Equivalent notation

- MT L

A (A1) — y(n)
MT1 — MA

Current image estimate in voxel i M;; System matrix

Measured projections in pixel j




Ordered Subset Expectation
Maximization (OSEM)

* Accelerated version of MLEM sorting the LORs into
subsets.

« Update equation

/\(_TH‘l) _ )\("’L) 1

z ZjeJMij

Pj Measured projections along LOR j M, j System matrix

)\?(:n) Estimated activity in voxel ifor iterationn .J Subset




Subsets
NSuby,,,> 1; NSub, ,,,= 1

« Each subset must cover entire FOV.

« Standard approach: Number of longitudinal subsets
NSub, ,,, is set to one.

Longitudinal

Transversal

Only direction of LORs shown! Oblique LORs shown only once!




Subsets
NSuby,,, = 1; NSub, o, > 1

« Each subset must cover entire FOV.

- Alternative approach (I): subsets are defined in
longitudinal direction only.

Longitudinal

Transversal

Only direction of LORs shown! Oblique LORs shown only once!




Subsets
NSuby,,,> 1; NSub, ,,,> 1

« Each subset must cover entire FOV.

 Alternative approach (ll): subsets are defined in both

directions. Longitudinal

Transversal

Only direction of LORs shown! Oblique LORs shown only once!




FBP vs. MLEM

Simulation

MLEM

10 lterations

C = 15 kBg/mL, W = 30 kBg/mL dk‘fz.



FBP vs. MLEM

Measurement




MLEM vs. OSEM

Simulation

MLEM MLEM OSEM

2 lterations 28 lterations 2 lterations; 14 Subsets

~14-fold reconstruction
time

C = 15 kBg/mL, W = 30 kBg/mL dk‘fz.



Ordinary-Poisson (OP) MLEM

- Standard MLEM requires the projection data to be
pre-corrected, e.g., for attenuation, randoms, scatter.

 However, pre-corrected projection data are not
Poisson-distributed.

 To preserve Poisson statistics, the corrections can
be included into the update equation:

(nt+1) _ y(n) 1 : » ) <
)\7; _ Ar” Zj Mij a;/N; Zj sz Zk Mkj)\]g?)+(rj+3j)Nj/aj

P; Measured projections along LOR j

/\?(:n) Estimated activity in voxel i for iterationn  [\;; System matrix
a; = e 2 Mrlk;  Attenuation along LOR j Nj Normaliziation

Tj,S; Measured contribution of randoms and scatter along LOR j




Maximum-a-posteriori (MAP)
Approach

* Bayesrule: p()\|p) = P(plljﬁ)l;(k)

 MAP objective funtion:
®(Alp) = In P(Alp) = L(p|A) + In P(A)

= L(p|A) — BR(A)

with the general Gibbs prior P(\) = - exp(—8R(\))
and dropping terms not dependent on A

* The regularization or penalty term R(A) can be used to
enforce desired image properties, such as, e.g.,
— low noise.
— preservation of edges.
— structural similarity with anatomical prior information.




One-step-late (OSL) Algorithml1]

 Directly optimizing the MAP objective function is
difficult.

 In the OSL approach, the partial derivatives of R(A)
are evaluated for the current image estimate A"
yielding the update equation

A\(nt1) _ y(n) 1 ZMz Pj

% ZJ M’LJ T B%R(A)P\:)\(n) j ’ Zk Agn)Mkj

« Similar form as standard MLEM, but

— OSL does not generally converge.
— nhegative values may occur and need special handling.

[1] P. J. Green, “Bayesian Reconstructions From Emission Tomography Data Using a Modified EM dkf
Algorithm,” IEEE Trans. Med. Imaging, vol. 9, no. 1, pp. 84-93, 1990. z.




Time-of-flight (TOF)

 Measure the difference 4t in the arrival times of two
photons originating from the same annihilation

event. d 5S¢ 2d

Detector A ’/\/\f \/\/\/\/\/\‘ Detector B

\ ,

||||||||||||||||
FOV

« 500 ps timing resoultion yields

« TOF can be used to increase SNR.




TOF Reconstruction

« TOF information can be incorporated into the system
matrix M.

] _1 (mt——ﬁ) °
.. L, = L 2 o

MZJ % szt — MZJ \/%O_Je J

0t Measured time difference /A; Size of TOF bins
t=—Ng/2,--- ,+N¢/2 N; Number of TOF bins

0, Standard deviation, dependent on LOR j and system timing resolution

« The form of the update equation does not change.

1 Pjt
AEn—I—D _ )\gn) Zth J
Zj,t Mjq jst Dkt )\l(cn)M’fjt

Y




Advanced AC Methods for PET/MR

- Segmentation-based methods

— To include bone information, extend the standard MR-based method
using

» dedicated sequences, e.g., UTE.
» additional low dose CT scans.
» external transmission sources.

 Atlas-based methods

— Co-register external CT data from a patient database (atlas) with the
measured MR data to obtain a pseudo-CT of the investigated patient.
 Emission-based methods

— Reconstruct activity distribution and attenuation map
simultaneously using the PET emission data and additional
constraints such as

» Time-of-flight (TOF) information
» MR-derived anatomical prior information




MR-MLAA

 Reconstruct attenuation and activity distributions
simultaneously from PET emission data using MR
prior information.

— Optimize an objective function which is a combination of the log-
likelihood and some MR-based prior information.

— Initialize the simultaneous algorithm with an MR-based attenuation
map.
 The presented algorithm is an extension of the
maximum-likelihood reconstruction of attenuation
and activity (MLAA)['l for non-TOF PET/MR, called
MR-MLAA.

[1] J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, and P. Suetens, “Simultaneous maximum a posteriori
reconstruction of attenuation and activity distributions from emission sinograms.,” IEEE Trans. Med. Imaging 18(5), 393—403 (1999). dk z.




Workflow

A4
attenuation update [y

activity 4 PET
MR image(s) distribution err#ssi'on' lata

initial
attenuation map

Standard
MREHBRd4kA AC




Cost Function and Update Equations

- Simultaneous reconstruction of the activity A and the
attenuation y from the measured projections p by
optimizing the cost function C consisting of the log-
likelihood L and the prior terms Lg and L,.

C(A, p) = LA, p) + Ls(p) + Li(pe)
 Activity Update (AW-MLEM)

(n+1)  \(n) J
)\i _)\z >, Mtg ) Z M’LJ bz(?n)

, voxel index
' LOR index

iteration number

est. attenuation

2

J

n
M system matrix
a

b

. est. projections

a« > (0 Relaxation para.

« Attenuation Update

(n+1)

1 :u§”)+a (35 (2365~ ))%ii@sﬂﬂ

J

2.
Ej (M Jagn)b(n) 2 bi 3) 2 (Ls+L1)




Prior Information

When both the attenuation distribution iy and the
activity distribution A are unknown, optimizing the
log-likelihood L(A, u) is an ill-conditioned problem.

Prior information can help to drive the algorithm
towards a ‘meaningful’ solution.
Cost function: C'(\, u) = L(A, ) + Ls(pe) + Li(we)
Smoothing prior Lg

— Favors smooth attenuation map.

Intensity prior L,

— Voxel-dependent Gaussian-like probability distribution of pre-
defined attenuation coefficients, e.g., for soft tissue, air, bone, etc.
Deviating values are penalized.




MR Image (T1)
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« Use the MR image to create a
mask defining air/bone and
soft tissue.

Smooth mask.

Define logarithm of intensity
prior L, as linear combination
of air/bone intensity prior L,g

and soft tissue intensity prior
Loy

Ly = (1 — W)BABLAB + wPBsrLgr

w Voxel-dependent weighting factor,
based on attenuation mask

Bas, Pst  Global weighting factors




Simulations

- Simulate PET emission data accounting for Poisson
noise and attenuation (and scatter and randoms).

* Perform reconstruction using
— the true attenuation for AC.
— standard MR-based AC (MRAC).
— MR-consistent reconstruction of attenuation and activity
(MR-MLAA).
- Evaluation
— Measure mean activity in ROls corresponding to simulated lesions.
» Lesion 1: A,
» Lesion 2: A,
— Present results relative to the true AC case.




Patient 1

Attenuation Mask Derived from MR
MR Image True AC MRAC MR-MLAA
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CT Image
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lllustration of Workflow

Respiratory Motion

Cardiac Motion

Measured
Projection Data

Respiratory
Gated Images
(PCFg)

Artifact Images
(PCFpg)

i\

Respiratory MVFs
(Mouse + Artifact)

|

Cardiac MVFs
(Mouse + Artifact)

Cardiac
Gated Images

(MoCogr+PCF.) l/

Respiratory MVFs
(Mouse)

Respiratory MVFs
(Artifact)

o
Cardiac MVFs
(Mouse)

Artifact Images Cardiac MVFs
(PCF¢) (Artifact)

A

Forward
Projections

_cfz,
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3D CBCT Double-Gated 5D CBCT Sequential acMoCo
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The cardiac motion is shown at a fixed respiratory phase.

\V4 A Ri AN Brehm, Sawall, Maier, and KachelrieB, “Cardio-respiratory motion-compensated micro-CT image dkf
reconstruction using an artifact model-based motion estimation” Med. Phys. submitted (2015). z.

medical systems




Thank You!

(C:U'—L ' The 4t International Conference on
Image Formation in X-Ray Computed Tomography

July 18 — July 22, 2016, Bamberg, Germany
www.ct-meeting.org

Marc KachelrieB, German Cancer Research Center (DKFZ), Heidelberg, Germany

Thorsten HeuBer and Christopher Rank have helped to prepare the
presentation. This presentation will soon be available at

www.dkfz.de/ct. Parts of the reconstruction software were provided by
RayConStruct® GmbH, Niirnberg, Germany.

Wanted: PhD-students. Open positions available. Mail to marc.kachelriess @dkfz.de dkflo




