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Part 2

Iterative Image 
Reconstruction
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Model

Solution
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Filtered Backprojection (FBP)

Measurement:

Fourier transform:

This is the central slice theorem:

Inversion:
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„I hate to think! 
I reconstruct iterative.“

Freek Beekman, Fully3D Meeting, Lindau, Germany, 2007
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2D Parallel Beam Reconstruction

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Spiral Cone Beam CT Reconstruction

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Short Scan Cone Beam Reconstruction

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Exact Spiral Reconstruction

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Exact Cone Beam Reconstruction

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Reconstruction from Truncated Data

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Image Reconstruction within ROIs

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Image Reconstruction within ROIs

Analytical tomographic reconstruction Iterative tomographic reconstruction
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Update 
equation

Model



122

Influence of Update Equation and Model
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CT System Matrix

Radon or x-ray 
transform

image to be
reconstructed

measured
rawdata



124

Kaczmarz‘s Method
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Kaczmarz‘s Method (2)

• Successively solve

• To do so, project onto the hyperplanes

• Repeat until some convergence criterion is reached
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Kaczmarz‘s Method (3)



127

Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique 

(ART)
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Kaczmarz‘s Method = ART

Update 
equation

Model
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Kaczmarz‘s Method = ART

512 iterations 512 iterations
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apply inverse model

apply forward model
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Direct vs. Filtered Backprojection
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Flavours of Iterative Reconstruction

• ART

• SART  

• MLEM

• OSC

• and hundreds more …
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Cost Functions

• General expression:

• Examples:

statistical
properties

and
preconditioning

additional
penalties
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Assume there exists     such that                    . Then everything reduces to a 
shift variant image filter:

In case of shift invariance we can convert to Fourier domain:

PWLS

Gradient

Gradient update

At convergence

Fixed point

low-pass

high-pass

Linear PWLS
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Assume there exists     such that                    . Then everything reduces to a 
shift variant image filter:

PWLS

Gradient

Gradient update

At convergence

Fixed point

Non-Linear PWLS
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Iterative Reconstruction: Parameters
• Image/object representation

– Pixel centers

– Pixel area

– Blobs

– Sampling density (pixel size, pixel locations, …)

• Forward model (forward projection)
– Joseph-type, Bresenham-type, distance-driven-type, …

– Needle beam (infinitely thin ray), many needle beams per ray, …

– Beam shape (varying beam cross-section, angular blurring, …)

– Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, …)

• Objective function, update equation
– Statistical model (Gaussian, Poisson, shifted Poisson, …)

– Regularisation (edge-preserving, …)

– Artifact reduction

• Inverse model (backprojection)
– Transpose of forward model

– Pixel-driven backprojection

– Filtered backprojection

– …
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Image Representation
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Image Representation
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Image Representation
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Forward Model: Beam Shape
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Forward Model: Beam Shape
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Forward Model: Beam Shape
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Forward Model: Beam Shape
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Forward Model: Beam Shape
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Forward Model: Beam Shape
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Image Representation and 
Forward Model are Linked!

Joseph’s forward projector
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Objective Function: Gauß Model

• Assume that the attenuation is Gaussian-distributed

i.e.                                                       with                .

• Consequently, the likelihood for all N measured 
signals is (                   ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.
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• This leads us to minimizing

which means solving

• This must be done numerically (e.g. Jacobi method) 
and the solutions are often of type



149

Update Equation: Gauß Model

• ART

• SART

• and many more …
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Objective Function: Poisson Model

• Assume that the intensities are Poisson-distributed

which means                                with                         .

• Consequently, the likelihood for all N measured 
signals is (                          ):

• Before maximizing take the log, penalize roughness,

and then find the image f that maximizes L.
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Update Equation: Poisson Model

• MLEM

• OSC

• and many more …
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OSC 4 OSC 8

OSC 128 FBP

OSC 128 − FBP

(C
=

0
,  W

=
1
5
0
)

(C
=

0
,  W

=
1
0
0
)

σ=44 HU σ=67 HU

Native OSC Converges Slowly
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Proper Initialization Helps!

OSC 4, initialized with
constant value

OSC 4, initialized with
matched FBP

OSC 4, initialized with
smooth FBP

Same noise as FBP 50% less noise than FBPInsufficient image quality

(C
=

0
,  W

=
1
5
0
)

(C
=

0
,  W

=
1
0
0
)

FBP image subtracted.

σ=67 HU σ=33 HU
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What Makes Iterative Recon Attractive?
• No need to come find an analytical solution

• Works for all geometries with only small adaptations

• Allows to model any effect

• Allows to incorporate prior knowledge
– noise properties (quantum noise, electronic noise, noise texture, …)

– prior scans (e.g. planning CT, full scan data, …)

– image properties such as smoothness, edges (e.g. minimum TV)

– …

• Handles missing data implicitly (but not necessarily 
better)

Phase-correlated Feldkamp High dimensional TV minimization1

1L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrieß, Phys. Med. Biol. 57, Jan. 2012
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Downsides

• Classical iterative recon is slow!

• Classical iterative recon cannot do small FOVs.

• There are many open parameters.

• The reconstruction is non-linear.

• Can we trust the images?
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Ordered Subsets

• Divide one iteration into S sub-iterations.

• Each of these S subsets covers N/S projections.

• During one iteration all subsets and therefore all 
projections are used exactly once.

• Per iteration the volume is updated S times (once per 
sub-iteration).

• An up to S-fold speed-up can be observed.
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Ordered Subsets
Illustration for N = 32 Projections

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

0 1 2 3 4 5 6 318 9 12 1310 11 14 16 19 2220 2725 267 2918 232117 2824 3015

Conventional procedure without subets (S = 1)

Ordered subsets with S = 8 sub-iterations
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Ordered Subsets

0123
4

5
6

31

8
9

12

13

10

11

14

16

19

22

20

27
26

25

7

29

18

23

21

17

28

24

30

15

NProjections = 32, Ordered Subsets: NSubsets = 8



164

Sequence Can be Generated Using 
Simple Bit Reversal

0  ->   0

1  ->  16

2  ->   8

3  ->  24

4  ->   4

5  ->  20

6  ->  12

7  ->  28

8  ->   2

9  ->  18

10  ->  10

11  ->  26

12  ->   6

13  ->  22

14  ->  14

15  ->  30

16  ->   1

17  ->  17

18  ->   9

19  ->  25

20  ->   5

21  ->  21

22  ->  13

23  ->  29

24  ->   3

25  ->  19

26  ->  11

27  ->  27

28  ->   7

29  ->  23

30  ->  15

31  ->  31
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Using Ordered Subsets Makes it Faster!
S = 1 (no subsets) S = 32 (ordered subsets)

512 iterations 16 iterations

512 iterations 16 iterations

C = 0 HU, W = 1000 HU
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Image Updates
S = 1 (no subsets) S = 32 (ordered subsets)

512 updates 512 updates

512 updates 512 updates

C = 0 HU, W = 1000 HU
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1. Problem

2. Solution

3. Discretisation

1. Problem

2. Discretisation

3. Update equation

Classical Iterative Reconstruction

Analytical Reconstruction
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Iterative Image Reconstruction in CT

• Sinogram- and image restoration (not truly iterative)

• Fully iterative (GE‘s Veo/MBIR only, but very slow, 
now being replaced by ASIR-V)

• Hybrid technologies (only one or two full iterations, 
including preconditioning) are the way to go.

• Compressed sensing type image reconstruction is 
not used commercially.
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Iterative != Iterative
• In many cases artifact correction is iterative

– Higher order beam hardening correction

– Cone-beam artifact correction

– Scatter correction

• Practical “iterative reconstruction” approaches
– often use empirical solutions

– combine iterative with analytical reconstruction

– combine iterative or analytical reconstruction with image 
restoration

Phase-correlated Feldkamp Low dose phase-correlated (LDPC) recon1

1S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrieß, MedPhys 38(3), 2011
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• Aim: less artifacts, lower noise, lower dose

• Iterative reconstruction
– Reconstruct an image.

– Regularize the image.

– Does the image correspond to the rawdata?

– If not, reconstruct a correction image and continue.

• SPECT + PET are iterative for a long time!

• CT product implementations
– AIDR (adaptive iterative dose reduction, Toshiba)

– ASIR (adaptive statistical iterative reconstruction, GE)

– iDose (Philips)

– IMR (iterative model reconstruction, Philips)

– IRIS (image reconstruction in image space, Siemens)

– VEO, MBIR (model-based iterative reconstruction, GE) 

– SAFIRE, ADMIRE (advanced model-based iterative reconstruction, 
Siemens)

Iterative Reconstruction
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apply inverse model

apply forward model

• Rawdata regularization: adaptive filtering1, precorrections, filtering of 
update sinograms...

• Inverse model: backprojection (RT) or filtered backprojection (R-1). In 
clinical CT, where the data are of high fidelity and nearly complete, one 
would prefer filtered backprojection to increase convergence speed.

• Image regularization: edge-preserving filtering. It may model physical 
noise effects (amplitude, direction, correlations, …). It may reduce noise 
while preserving edges. It may include empirical corrections.

• Forward model (Rphys): Models physical effects. It can reduce beam 
hardening artifacts, scatter artifacts, cone-beam artifacts, noise, …

regularize
image

regularize
rawdata

1M. Kachelrieß et al., Generalized Multi-Dimensional Adaptive Filtering, MedPhys 28(4), 2001
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Conventional FBP with rawdata denoising (all vendors) ASIR (Ge), AIDR3D (Toshiba), IRIS (Siemens), iDose (Philips)
SnapShot Freeze (GE), iTRIM (Siemens)

Veo/MBIR (Ge) SAFIRE, ADMIRE (Siemens)
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Siemens Standard

σ = 17.6 HU 

SAFIRE VA40

σ = 7.8 HU 

IRIS VA34

σ = 12.3 HU 

Plain FBP

σ = 26.8 HU 

CT images provided by Siemens Healthcare, Forchheim, Germany
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FBP ASIR Veo

Courtesy of Dr. Jiang Hsieh, GE Healthcare Technologies, WI, USA.
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Dose 
reduction 

values 
iterative 

compared to 
analytical 

image 
reconstruction 

claimed 
by clinical 

papers 2012 
and earlier.

M. Kachelrieß, Current Cardiovascular Imaging Reports 6:268–281, 2013.
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Motion Management for IGRT

Detector
kV Source

Linear Accelerator

Gantry
Rotation
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Retrospective Gating

Measured projections
assigned to one phase bin

Angular spacing of 
projection bins

Acquisition angle

100 %

0 %

50 %

Amplitude

Time
Projection angle

0 %50 % 0 %50 % 0 %50 % 0 %50 % 0 %50 %

End-Inhale

End-Exhale

Without gating (3D): 
Motion artifacts

With gating (4D):
Sparse-view artifacts
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Image Registration

Image to be deformed Image after registration

Target image
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Image Registration
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Image Registration
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Motion Compensation (MoCo)

• Use all projection data for each 
phase to be reconstructed

– Even those of other respiratory phase bins 
(100 % dose usage)

– Compensate for motion applying 
motion vector fields (MVFs) 

– In our case MVFs are estimated from 
conventional gated reconstructions

• Use MVFs during 
image reconstruction

– Backproject sparse data along straight 
lines, then warp with respect to the MVFs

– Computational efficiency

» Corresponds to backprojection along 
deformed lines

Straight backprojection

Warped backprojection
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• Motion estimation via 
standard 3D-3D registration

• Has to be repeated for each
reconstructed phase

• Streak artifacts from gated reconstructions propagate 
into sMoCo results

Gated 4D CBCT

A Standard Motion Estimation and 
Compensation Approach (sMoCo)

sMoCo

Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” 
Med. Phys. 51(9), 3688–3695 (2007).
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• Motion estimation only between adjacent phases 
– All other MVFs given by concatenation

• Incorporate additional knowledge
– A priori knowledge of quasi periodic breathing pattern

– Non-cyclic motion is penalized

– Error propagation due to concatenation is reduced

A Cyclic Motion Estimation and 
Compensation Approach (cMoCo)

Displacement curve
of a fictitious pixel
over complete 
respiratory cycle

w/o temporal constraints

with temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-
compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12), 7603-7618 (2012).
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Artifact Model-Based MoCo (aMoCo)

Segmented Image3D CBCT

Gated 4D CBCT 4D Artifact Images

Virtual rawdata:Measured data:

Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific 
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913 (2013).
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Propagation of Respiratory Motion

• Respiratory motion propagates into 3D 
reconstruction even if the image is stationary. 

• Perform segmentation before forward projection.

PC = phase-correlated reconstruction = gated reconstruction (CT or MR). C = -200 HU, W = 1400 HU
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Motion Estimation using an 
Patient-Specific Artifact Model

Cyclic RegistrationGating and Independent 
Reconstruction

Measured Data Gated 4D CBCT

4D Artifact Images

3D CBCT

Segmented Image

Forward Projections

acMoCo:
Artifact Model-Based 
Motion Compensation

Motion Vector Fields
(induced by artifacts only)

Simulate Motionless 
Projection Data

Motion Vector Fields
(breathing only)

Motion Vector Fields
(induced by breathing

and artifacts)

cMoCo:
Cyclic Motion 
Compensation
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Patient Data – Results

sMoCo
Standard Motion 
Compensation

3D CBCT
Standard

Gated 4D CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

C = -200 HU, W = 1400 HU
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Iterative Image Reconstruction in MR

• For cartesian k-space sampling, a simple inverse FFT 
usually suffices for image reconstruction. 

• Therefore, iterative reconstruction methods are 
mainly needed for non-cartesian k-space sampling.

• Methods are similar to CT, but other difficulties arise, 
e.g. in parallel imaging with multiple coils, coil 
sensitivity profiles have to be considered, which are 
in general unknown and have to be estimated.

• Typically, cost functions consist of a rawdata fidelity 
term and regularization terms in a sparsity
transformed space, such as TV, wavelets, …, which 
are optimized in an alternating manner.
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MR

K-Space Sampling Scheme

Simulation Measurement

160 radial spokes per slice 480 radial spokes per slice

3D encoded radial stack-of-stars sequence

radial sampling in transversal 

plane

radial sampling in coronal or 

sagittal plane

acquisition time: 38 s acquisition time: 57 – 69 s

data sorted retrospectively into 20 overlapping motion 

phases (10% width of respiratory cycle, 5% steps)

reordered interleaved angle 

increment

interleaved Golden angle 

increment
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3D-2D cyclic
registration3

(3D-2D cMoCo)

Demons cyclic
registration1

(cMoCo)

MR MoCoRT tracking

MR rawdata

Demons artifact model-
based registration1,2

(acMoCo)

MR gated gridding MR HDTV

[1] Brehm, Paysan, Oelhafen, Kuntz, Kachelrieß. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy. Med. Phys. 2012.

[2] Brehm, Paysan, Oelhafen, Kachelrieß. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med. Phys. 2013.
[3] Flach, Brehm, Sawall, Kachelrieß. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy. Phys. Med. Biol. 2014.

Motion Vector Fields (MVFs)

Motion Estimation Framework
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Deformable 3D-3D Registration
(Demons Algorithm)

• Deform prior image         to match the target image        .

• Calculate forces based on sum of squared differences in 
image domain:

• Smooth velocity vector field        with a Gaussian kernel. 

• Then update displacement vector field 

and smooth with another Gaussian kernel.

• Do a few (about 10) iterations until convergence.

Thirion. Image matching as a diffusion process: An analogy with 
Maxwell’s demons. Medical Image Analysis 2(3):243–260, 1998.
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• Deform prior image         to match the rawdata    :
– Displacement vector field (DVF):          

– Deformed image: 

– Matching criterion:                                                      (rawdata fidelity)

– Velocity vector field: 

– Smoothness of a vector field                                                        achieved 
by minimizing

– Diffusive regularization:

– Fluid regularization:

• Determine the DVF     by minimizing the following cost 
function:

Deformable 3D-2D Registration

Flach, Brehm, Sawall, Kachelrieß. Deformable 3D-2D registration for CT and its 
application to low dose tomographic fluoroscopy. Phys. Med. Biol. 59:7865–7887, 2014.
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[1] Brehm, Paysan, Oelhafen, Kuntz, Kachelrieß. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy. Med. Phys. 2012.

[2] Brehm, Paysan, Oelhafen, Kachelrieß. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med. Phys. 2013.

cyclic
registration1

gating and
reconstruction

simulate
motionless data

measured data

MVFs
(induced by 
breathing

and artifacts)
4D gated MR

4D artifact images

3D MR

forward transform

4D MoCo PET

MVFs
(induced by 

artifacts only)

MVFs
(corrected)

segmented MR

MR

Artifact Model-Based Estimation of MVFs2
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Backproject-then-Warp MoCo

• MVFs have to be calculated by one of the three options 
(acMoCo, cMoCo or 3D-2D cMoCo) in advance.

• A gated gridding reconstruction of the MR rawdata is 
performed.

• MoCo backproject-then-warp of gate g:

fg = 0 fg = 1 … fg = G

“warp” gated images

fg: image of gate g
g, g’: gate indices
G: total number of gates
TT

g’ →g: backward warping operation
mapping gate g’ to g
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Iterative Reconstruction (HDTV)1,2

• Cost function

• The rawdata fidelity and the spatial and temporal 
smoothness of the image are optimized in an alternating 
manner

• Instead of XT we precondition and use X-1, i.e. gridding 
followed by inverse Cartesian Fourier transform.

• The cost function is optimized for the complete 4D 
volume including all motion phases

rawdata fidelity total variation

1 Ritschl, Bergner, Fleischmann, Kachelrieß. Improved total variation-based CT image reconstruction applied to clinical data. Phys. Med. Biol. 2011.
2 Ritschl, Sawall, Knaup, Hess, Kachelrieß. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys. Med. Biol. 2012.

X: Fourier transform

f: image

p: rawdata

α: strength

║ · ║TV, xyzt: total variation
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MoCo Iterative Reconstruction (MoCo HDTV)

• MVFs have to be calculated by one of the three options 
(acMoCo, cMoCo or 3D-2D cMoCo) in advance

• The same cost function as for HDTV is optimized, but in 
the rawdata step, the image update ug of gate g is 
calculated using backproject-then-warp

ug = 0 ug = 1 … ug = G

“warp” update images

ug: image update of gate g
g, g’: gate indices
G: total number of gates
TT

g’ →g: backward warping operation
mapping gate g’ to g
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Results of Simulated Data

160 radial spokes per slice, 20 overlapping phases, acquisition time: 38 s

MoCo
MVF from 3D-2D cMoCo

HDTVgated gridding ground truth
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HDTVgated gridding

480 radial spokes per slice, 20 overlapping phases, acquisition time: 57 s

Results of Measured Data (Volunteer)

MoCo
MVF from cMoCo

MoCo-HDTV
MVF from cMoCo
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gated gridding
(1925 spokes: 229 s)

480 radial spokes per slice, 20 overlapping phases, acquisition time: 57 s

MoCo
MVF from cMoCo

MoCo-HDTV
MVF from cMoCo

HDTV

Results of Measured Data (Volunteer)
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Results of Measured Data (Patient)

480 radial spokes per slice, 20 overlapping phases, acquisition time: 69 s

HDTVgated gridding MoCo
MVF from cMoCo

MoCo-HDTV
MVF from cMoCo
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Results of Measured Data (Patient)

480 radial spokes per slice, 20 overlapping phases, acquisition time: 69 s

MoCo
MVF from cMoCo

MoCo-HDTV
MVF from cMoCo

iGRASP
(2035 spokes: 292 s)

gated gridding
(2035 spokes: 292 s)
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Iterative Image Reconstruction in PET

• Algebraic methods
– Do not correctly account for noise in the measured data.

– Example

» Algebraic reconstruction technique (ART).

• Statistical methods
– Take into account the Poisson nature of the measured data.

– Maximum-likelihood (ML) approach

» Maximum-likelihood expectation maximization (MLEM).

» Ordered subset expectation maximization (OSEM).

– Maximum a posteriori (MAP) approach

» One-step-late (OSL) algorithm (= penalized MLEM).
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Particle Decay

• Let Mij denote the probability that a photon emitted 
from pixel i contributes to LOR  j. Mij is affected by

– System geometry

– Attenuation

– Scatter

– Detector inefficiencies

– …

• The probability pij for a photon emitted from pixel i
within time interval [t, t+∆t] contributes to LOR  j is 
then given by

with decay constant µ.
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Poisson Statistics

• The number of decays Kij resulting from ni unstable 
particles in pixel i and contributing to LOR j is 
binomial distributed as

• For large ni and small pij, the binomial distribution 
can be approximated by a Poisson distribution

with mean value

and activity image
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• The measurement along each LOR j is the sum

which also follows a Poisson distribution

• PDF and corresponding log- likelihood

Probability Density Function (PDF)
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Bayesian Approach

• Find image maximizing the probability given 
the projection data .

• Bayes rule:

• Maximum-a-posteriori (MAP) approach
– Maximize the posterior 

• Maximum-likelihood (ML) approach
– Maximize the likelihood

– Assumes                        , i.e., all images have equal probability  

Prior term

Constant
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Maximum-Likelihood (ML) Approach

• Bayes rule:

• Without prior, the problem reduces to maximizing

with expected projection data                              .

• Instead of the likelihood, it is more convenient to 
maximize the log-likelihood

Poisson 
distribution
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Maximum-Likelihood Expectation 
Maximization (MLEM)

• Maximization of the expectation value of the log-
likelihood yields the update equation

• Equivalent notation

Current image estimate in voxel i System matrix

Measured projections in pixel j
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Ordered Subset Expectation 
Maximization (OSEM)

• Accelerated version of MLEM sorting the LORs into 
subsets.

• Update equation

Measured projections along LOR j

Estimated activity in voxel i for iteration n Subset

System matrix
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z

Subsets
NSubTran > 1; NSubLong = 1 

x

y

Oblique LORs shown only once!Only direction of LORs shown!

Transversal

• Each subset must cover entire FOV.

• Standard approach: Number of longitudinal subsets
NSubLong is set to one.

Longitudinal



244

z

Subsets
NSubTran = 1; NSubLong > 1 

x

y

Oblique LORs shown only once!Only direction of LORs shown!

Transversal

• Each subset must cover entire FOV.

• Alternative approach (I): subsets are defined in 
longitudinal direction only.

Longitudinal
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z

Subsets
NSubTran > 1; NSubLong > 1 

x

y

Oblique LORs shown only once!Only direction of LORs shown!

Transversal

• Each subset must cover entire FOV.

• Alternative approach (II): subsets are defined in both
directions.

Longitudinal
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C = 15 kBq/mL, W = 30 kBq/mL

FBP
MLEM

10 Iterations

FBP vs. MLEM
Simulation



247

FBP MLEM

FBP vs. MLEM
Measurement

Bq/mL
10000

Bq/mL
10000
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MLEM vs. OSEM
Simulation

MLEM
2 Iterations

OSEM
2 Iterations; 14 Subsets

MLEM
28 Iterations

~14-fold reconstruction 
time

C = 15 kBq/mL, W = 30 kBq/mL
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Ordinary-Poisson (OP) MLEM

• Standard MLEM requires the projection data to be 
pre-corrected, e.g., for attenuation, randoms, scatter.

• However, pre-corrected projection data are not 
Poisson-distributed.

• To preserve Poisson statistics, the corrections can 
be included into the update equation:

Measured projections along LOR j

Estimated activity in voxel i for iteration n System matrix

NormaliziationAttenuation along LOR j

Measured contribution of randoms and scatter along LOR j
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Maximum-a-posteriori (MAP) 
Approach

• Bayes rule:

• MAP objective funtion: 

• The regularization or penalty term R(λ) can be used to
enforce desired image properties, such as, e.g.,

– low noise.

– preservation of edges.

– structural similarity with anatomical prior information. 

with the general Gibbs prior
and dropping terms not dependent on λ
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One-step-late (OSL) Algorithm[1]

• Directly optimizing the MAP objective function is
difficult.

• In the OSL approach, the partial derivatives of R(λ) 
are evaluated for the current image estimate λ(n)

yielding the update equation

• Similar form as standard MLEM, but
– OSL does not generally converge.

– negative values may occur and need special handling. 

[1] P. J. Green, “Bayesian Reconstructions From Emission Tomography Data Using a Modified EM 
Algorithm,” IEEE Trans. Med. Imaging, vol. 9, no. 1, pp. 84–93, 1990.
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Time-of-flight (TOF)

• Measure the difference       in the arrival times of two 
photons originating from the same annihilation 
event. 

• 500 ps timing resoultion yields ≈ 7.5 cm spatial
resolution.

• TOF can be used to increase SNR.

Detector A Detector B

FOV
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TOF Reconstruction

• TOF information can be incorporated into the system
matrix M.

• The form of the update equation does not change.

Measured time difference

Standard deviation, dependent on LOR j and system timing resolution 

Size of TOF bins

Number of TOF bins
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Advanced AC Methods for PET/MR

• Segmentation-based methods
– To include bone information, extend the standard MR-based method 

using

» dedicated sequences, e.g., UTE.

» additional low dose CT scans.

» external transmission sources.

• Atlas-based methods
– Co-register external CT data from a patient database (atlas) with the 

measured MR data to obtain a pseudo-CT of the investigated patient.

• Emission-based methods
– Reconstruct activity distribution and attenuation map 

simultaneously using the PET emission data and additional 
constraints such as

» Time-of-flight (TOF) information

» MR-derived anatomical prior information
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MR-MLAA

• Reconstruct attenuation and activity distributions 
simultaneously from PET emission data using MR 
prior information.

– Optimize an objective function which is a combination of the log-
likelihood and some MR-based prior information.

– Initialize the simultaneous algorithm with an MR-based attenuation 
map.

• The presented algorithm is an extension of the 
maximum-likelihood reconstruction of attenuation 
and activity (MLAA)[1] for non-TOF PET/MR, called 
MR-MLAA.

[1] J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, and P. Suetens, “Simultaneous maximum a posteriori 
reconstruction of attenuation and activity distributions from emission sinograms.,” IEEE Trans. Med. Imaging 18(5), 393–403 (1999).
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Workflow

activity 
distribution

Standard 
MR-based AC

attenuation map

PET 
emission dataMR image(s)

initial 
attenuation map

attenuation update

activity update

iteration

MR-MLAA
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Cost Function and Update Equations

• Simultaneous reconstruction of the activity λ and the 
attenuation µ from the measured projections p by 
optimizing the cost function C consisting of the log-
likelihood L and the prior terms LS and LI.

• Activity Update (AW-MLEM)

• Attenuation Update

voxel index

LOR index

iteration number

system matrix

est. attenuation

est. projections

Relaxation para.
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Prior Information

• When both the attenuation distribution µ and the
activity distribution λ are unknown, optimizing the
log-likelihood L(λ, µ) is an ill-conditioned problem.

• Prior information can help to drive the algorithm 
towards a ‘meaningful’ solution.

• Cost function: 

• Smoothing prior LS

– Favors smooth attenuation map.

• Intensity prior LI

– Voxel-dependent Gaussian-like probability distribution of pre-
defined attenuation coefficients, e.g., for soft tissue, air, bone, etc. 
Deviating values are penalized. 
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Intensity Prior

• Use the MR image to create a 
mask defining air/bone and 
soft tissue.

• Smooth mask.

• Define logarithm of intensity
prior LI as linear combination 
of air/bone intensity prior LAB 

and soft tissue intensity prior 
LST:

MR Image (T1)

Attenuation Mask

Air

Bone

Bone

Air

Soft 
tissue

Soft 
tissue

Global weighting factors

Voxel-dependent  weighting factor, 
based on attenuation mask
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Simulations

• Simulate PET emission data accounting for Poisson 
noise and attenuation (and scatter and randoms).

• Perform reconstruction using
– the true attenuation for AC.

– standard MR-based AC (MRAC).

– MR-consistent reconstruction of attenuation and activity 
(MR-MLAA). 

• Evaluation
– Measure mean activity in ROIs corresponding to simulated lesions.

» Lesion 1: A1

» Lesion 2: A2

– Present results relative to the true AC case.
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Patient 1
Attenuation Mask Derived from MR

MR Image

Attenuation Mask
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Patient 2
Attenuation Mask Derived from CT

CT Image

Attenuation Mask

True AC MRAC MR-MLAA
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5D MoCo?
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FDK

Respiratory 
Gated Images 

(PCFR)

Respiratory MVFs
(Artifact)

Prior Image

Artifact Images
(PCFR)

Forward 
Projections

Measured 
Projection Data

Respiratory MVFs
(Mouse)

Respiratory MVFs
(Mouse + Artifact)

Cardiac
Gated Images
(MoCoR+PCFC)

Artifact Images
(PCFC)

Cardiac MVFs
(Artifact)

Cardiac MVFs
(Mouse)

Cardiac MVFs
(Mouse + Artifact)

Respiratory Motion Cardiac Motion

Illustration of Workflow



265

Respiratory–Gated
Cardiac–Gated

Respiratory–Gated
Only

Respiratory–Compensated
Cardiac–Gated

Respiratory–Compensated
Cardiac–Compensated
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FDK PCF acMoCo

C = 200 HU, W = 1200 HU
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3D CBCT Double-Gated 5D CBCT Sequential acMoCo

The cardiac motion is shown at a fixed respiratory phase.
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Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. submitted (2015).
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Thank You!

Thorsten Heußer and Christopher Rank have helped to prepare the 
presentation. This presentation will soon be available at 
www.dkfz.de/ct. Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.

Wanted: PhD-students. Open positions available. Mail to marc.kachelriess@dkfz.de


