A Robust Fully Automatic Method for Intrinsic Respiratory and Cardiac Gating for Cone-Beam CT Scans of the Thorax Region

> Andreas Hahn^{1,2}, Michael Knaup¹, and <u>Marc Kachelrieß^{1,2}</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²University of Heidelberg, Heidelberg, Germany

- Provide intrinsic respiratory and cardiac gating signals (peaks) for scans
 - where no external signal is available
 - or where the gating signal is corrupted
- Do not require any user input

Patient Example where a Gating Signal is Required

Brehm, Paysan, Oelhafen, and Kachelrieß, "Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT" Med. Phys. 40(10):101913, 2013.

External Respiratory/Cardiac Signal Acquisition

Intrinsic CT Gating Prior Art

	Method	Respiratory Gating	Cardiac Gating	Fully Automatic	СВСТ
[1]	Kymogram detection	x	\checkmark	\checkmark	x
[2-6]	Resp. gating	\checkmark	x	\checkmark	\checkmark
[7-9]	Small animal CT: Resp. gating	\checkmark	x	x	\checkmark
[10,11]	Small animal CT: Resp. + card. Gating	\checkmark	\checkmark	🗸 X	\checkmark
	Proposed algorithm	\checkmark	\checkmark	\checkmark	\checkmark

[1] M. Kachelrieß et al. *Kymogram Detection and Kymogram-Correlated Image Reconstruction from Subsecond Spiral Computed Tomography Scans of the Heart*, Med. Phys. 29(7): 1489-1503, July 2002

[2] L. Zijp et al. *Extraction of the Respiratory Signal from Sequential Thorax Cone-Beam x-ray Images*, Int. Conf. on the Use of Computers in Radiation Therapy, pp 507–9, 2004

[3] M. van Herk et al. On-line 4D Cone Beam CT for Daily Correction of Lung Tumour Position during Hypofractionated Radiotherapy, Proc. Int. Conf. on the Use of Computers in Radiation Therapy (ICCR 07) p 6241[9], 2007

[4] A. Kavanagh et al. Obtaining Breathing Patterns from any Sequential Thoracic X-Ray Image Set, Phys. Med. Biol. 54 4879, 2009

[5] I. Vergalasova et al. A Novel Technique for Markerless, Self-Sorted 4D-CBCT: Feasibility Study, Med. Phys. 39 1442, 2012

[5] D. Salam et al. Local Intensity Feature Tracking and Motion Modeling for Respiratory Signal Extraction in Cone Beam CT Projections, IEEE Transactions on (Volume:60, Issue: 2) Page(s): 332 – 342, 2012

[7] T. H. Farncombe. Software-based respiratory gating for small animal cone-beam CT, Med. Phys. 35, 1785, 2008

[8] S. Bartling et al. Intrinsic respiratory gating in small-animal CT, Eur. Radiol. 18 1375-84, 2008

[9] H. Jicun et al. Dynamic Small Animal Lung Imaging Via a Postacquisition Respiratory Gating Technique using Micro-Cone Beam Computed Tomography, Academic Radiology Volume 11, Issue 9, Pages 961–970, September 2004

[10] J. Dinkel et al. Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging, Circ Cardiovasc Imaging 1(3):235-43, Nov 2008

[11] J. Kuntz et al. *Fully automated intrinsic respiratory and cardiac gating for small animal CT*, PHYSICS IN MEDICINE AND BIOLOGY 55(7):2069-85, April 2010

• Grid points are distributed regularly in the volume.

• Grid points are distributed regularly in the volume.

- Grid points are distributed regularly in the volume.
- Each grid point is
 - tracked on the detector

- Grid points are distributed regularly in the volume.
- Each grid point is
 - tracked on the detector
 - center of a rectangular ROI in the projections

- Mean gray value + band-pass filter as motion surrogate
- Determine peaks automatically by finding local maxima
- Result: Signal with most regular peaks

Cardiac Gating

Cardiac gating: Surface of circle around grid point is tracked.

Ventricular wall is covered by <u>both</u> ROIs.

Cardiac Gating

Cardiac gating: Surface of circle around grid point is tracked.

Ventricular wall is only covered by this ROI!

Evaluation

- 10 patients
- 60 s scan time
- Respiratory gating:
 - Grid: 20 × 20 × 20
 - ROI size: about 12 by 8 cm
 - Band-pass: 10 to 30 rpm
 - GT: Varian RPM system
- Cardiac gating:
 - Grid: 50 × 50 × 50
 - ROI size: about 8 by 4 cm
 - Band-pass: 50 to 120 bpm
 - Radii: 30 mm to 50 mm in steps of 2 mm
 - GT: Manual evaluation of sinogram

Results

Respiratory Gating

Patient	RPM_{GT}	RPM_{IG}	ΔRPM
1	19	19	0
2	26	26	0
3	20	20	0
4	11	11	0
5	11	11	0
6	9	9	0
7	23	23	0
8	23	23	0
9	26	26	0
10	23	23	0

Cardiac Gating

Patient	BPM_{GT}	BPM_{IG}	ΔΒΡΜ
1	80	80	0
2	70	69	-1
3	65	66	1
4	70	70	0
5	52	52	0
6	61	61	0
7	78	78	0
8	69	70	1
9	86	86	0
10	74	74	0

Conclusions

- Our method determined the correct respiratory peaks for all patients with a maximum error of 522 ms in the position of the maximum.
- Our method correctly determined the cardiac peaks in 7 patients. The remaining 3 patients showed a maximum error of 1 peak.

¹Brehm, Sawall, Maier, and Kachelrieß, Med. Phys. 42(4):1948-1958, 2015.

Thank You!

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

This study was supported by DFG KA 1678/13. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.