Dedicated Metal Artifact Reduction for Photon Counting CT

Achim Byl^{1,2}, Jennifer Hardt^{1,2}, Laura Klein^{1,2}, Eckhard Wehrse^{1,2}, Heinz-Peter Schlemmer^{1,2}, Sarah Heinze², Monika Uhrig^{1,2}, Stefan Sawall^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany

²Ruprecht-Karls-University of Heidelberg, Germany

Introduction

- Metal artifacts strongly reduce the diagnostic value of CT images
- Metal artifacts are caused by a combination of scatter, beam hardening, and photon starvation
- Even frequency split normalized metal artifact reduction (FSNMAR), the gold standard, cannot fully remove artifacts

Original

Conventional vs. Photon Counting CT

Conventional CT

1 image to correctNo additional information

Photon Counting CT (PCCT)

- 4 images to correct
- Additional spectral information

C = 50 HU, W = 700 HU

Normalized MAR (NMAR)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2010.

Frequency Split NMAR (FSNMAR)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Frequency split metal artifact reduction (FSMAR) in computed tomography", Med. Phys. 39(4):1904-1916, 2012.

PC-FSNMAR Scheme

Optimization

- The optimization uses a Nelder-Mead algorithm that minimizes a cost function *C* with respect to the linear combination *LC*.
- $C(LC, w) = L(LC, w) + \lambda TV(LC, w)$
- $L(LC, w) = \sum_{i,j} w(i,j) LC^2(i,j)$
- The weight map w(i,j) is non-zero only for soft tissue
- *TV(LC,w*): reduces streaks and smooths the image
- *L*(*LC*, *w*): penalizes large homogeneous Artifacts
- Choice of w and λ determine the properties of the *LC*

W_{Low noise}

Measurements

CT data of forensic specimen (approval by ethics board S-388/2014) were obtained from a Siemens SOMATOM CounT with

- Voltage: *U* = 140 kV
- Tube current: $I_{eff} = 300 \text{ mAs}$
- Eff. slice thickness: S_{eff} = 0.6 mm
- Pixel size: $\Delta x = \Delta y = 0.5 \text{ mm}$
- Energy thresholds: 25/45/75/90 keV
- Reconstruction kernel: B40f

Analysis

- To quantify image quality, we employ these measurements:
 - Artifact content: standard deviation of an ROI with metal artifacts
 - Image quality: contrast-to-noise ratio of soft tissue and bone; one ROI in each tissue

Results

Bin 1

Bin 2

Bin 3

Bin 4

 $\sigma_{\rm A}$ = 1005.3 HU, CNR = 8.6 σ_{A} = 953.9 HU, CNR = 7.4 $\sigma_{\rm A}$ = 830.0 HU, CNR = 7.5 σ_{A} = 484.1 HU, CNR = 8.0

 $\sigma_{\rm A}$ = 122.5 HU, CNR = 8.8

 $\sigma_{\rm A}$ = 132.2 HU, CNR = 10.4 σ_{A} = 133.4 HU, CNR = 8.6

 $\sigma_{\rm A}$ = 87.8 HU, CNR = 10.0

 $\sigma_{\rm A}$ = 94.4 HU, CNR = 9.4 $\sigma_{\rm A}$ = 94.8 HU, CNR = 10.6 $\sigma_{\rm A} = 88.3 \text{ HU}, \text{ CNR} = 9.0$ $\sigma_{\rm A}$ = 87.5 HU, CNR = 10.4

C = 50 HU, *W* = 700 HU

Original

C = 50 HU, W = 700 HU

Results

Bin 1

Original

FSNMAR

PC-FSNMAR

C = 50 HU, W = 700 HU

dkfz.

C = 50 HU, W = 700 HU

Conclusion

- PC-FSNMAR significantly improves image quality compared to conventional bin-wise FSNMAR
- Regions close to the metal show more details
- Artifacts are reduced without sacrificing CNR
- Some artifacts remain

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg (virtual only) • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.