Does Dual Energy Dual Source CT with Energy-Selective Photon Counting Detectors Make Sense?

Sebastian Faby¹, Stefan Kuchenbecker¹, David Simons¹, Heinz-Peter Schlemmer¹, Michael Lell², and <u>Marc Kachelrieß¹</u>

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany

Energy-Resolved CT Technology

• In the clinic:

This photon-counting whole-body CT prototype, installed at the Mayo Clinic, is a DSCT system. However, it is restricted to run in single source mode.

Photo courtesy of Siemens Healthcare, Forchheim, Germany.

Simulations

- Study typical dual energy CT (DECT) application:
 - Material decomposition: virtual non contrast (VNC) and iodine image

- Comparison of:
 - Dual source DECT techniques with energy integrating (EI) detectors
 - Energy-selective photon counting (PC) detectors
- Statistically optimal material decomposition¹:
 - Constant contrast due to calibration
 - Constant patient dose in all cases (absorbed energy)
 - Noise minimization = CNRD maximization

¹S. Faby, S. Kuchenbecker, D. Simons, H.P. Schlemmer, M. Lell, and M. Kachelrieß. CT calibration and dose minimization in image-based material decomposition with energy-selective detectors. SPIE Medical Imaging 903318:1-12, April 2014.

MECT Simulation

- Photon counting detector
- Energy bin spectra for B = 4, bin positions not optimized:

J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne and R. Proksa, "Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography," Phys. Med. Biol. 53, 4031-4047, 2008.

Results – PC (Ideal Model)

Results – PC (Realistic Model)

For details regarding the material decomposition method see Faby et al., SPIE 2014.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

PC/EI and PC/PC DSCT Concepts

- Improve PC detector performance using DSCT
- Replace low spectrum El detector by PC detector
- Replace both El detectors by PC detectors

Results – PC/EI (Realistic PC Model)

PC 100 kV / El Sn 140 kV

DS 100 kV / Sn 140 kV PC 1 bin PC 2 bins PC 4 bins VNC -11% noise -18% noise -19% noise reference lodine -18% noise reference -26% noise -27% noise

For details regarding the material decomposition method see Faby et al., SPIE 2014.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

Results – PC/PC (Realistic PC Model)

PC 100 kV / PC Sn 140 kV

For details regarding the material decomposition method see Faby et al., SPIE 2014.

Water: C = 0 HU / W = 400 HU lodine: C = 0 mg/mL / W = 6 mg/mL

Why is the PC/El combination better than the PC/PC combination?

Different intrinsic <u>x-ray photon energy weighting</u> of the two detector technologies

Detector signal for energy bin *b*:

$$S_b = \int dE \, \mathbf{s}(\mathbf{E}) N_{0,b}(E) e^{-p\psi(E)}$$

Detector sensitivity s(E):Photon counting:Energy integrating:s(E) = 1 $s(E) \propto E$ Photon countsScintillator light output

Conclusion

- Single source CT photon counting:
 - Ideal PC detector: Superior performance than DS DECT at 100 kV / Sn 140 kV.
 - Realistic PC detector: Inferior performance than DS DECT at 100 kV / Sn 140 kV.
- Dual source CT with one or two photon counters:
 - Significantly improves performance for realistic PC detector.
 - PC/EI combination may be an option for realistic PC detectors.
- Similar findings apply to 3rd generation DSCT running at 90 kV / Sn 150 kV.

Thank You!

Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant KA 1678/5-1 and LE 2763/1, and by the German Government, Bundesministerium für Bildung und Forschung (01EX1012B, Spitzencluster Medical Valley).

The reconstruction software was provided by RayConStruct[®] GmbH, Nürnberg, Germany.