Moving Metal Artifact Reduction (MMAR)

<u>Marcus Brehm</u>¹, Timo Berkus², Markus Oelhafen², Patrik Kunz², and Marc Kachelrieß^{1,3}

¹Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ²Varian Medical Systems, Baden-Dättwil, Switzerland ³German Cancer Research Center (DKFZ), Heidelberg, Germany

Metal Artifacts

- Sharp contrast (between metal object and surrounding tissue)
 - Nonlinear partial volume effect
 - Windmill artifacts
- Beam hardening, scatter
- Motion (electrodes, stents, clips, ...)

Metal artifact mainly due to beam hardening and scatter

Metal artifact mainly due to motion

Illustration of Conventional Metal Artifact Reduction (MAR-LI)

Image domain _i Rawdata domain

Metal Subject to Respiratory Motion

Flat detector cone-beam CT scan

- 6° per second maximum gantry rotation speed
 - » 60 seconds effective scan time
- 20 complete breathing cycles within scan time

Metal Subject to Respiratory Motion and MAR-LI

In MAR-LI motion is not taken into account

- Segmentation step yields motionless metal objects
- Forward projection of motionless metal object (metal trace)

Error in estimation of metal trace

- Detected metal region is much larger than in reality

Metal Subject to Respiratory Motion and MAR-LI

In MAR-LI motion is not taken into account

- Segmentation step yields motionless metal objects
- Forward projection of motionless metal object (metal trace)

Error in estimation of metal trace

- Detected metal region is much larger than in reality
- Not all positions of metal objects during the scan are detected

Rawdata-Based Segmentation

- MAR-LI uses image-based segmentation
- Several publications on rawdata-based segmentation for metal artifact reduction, e.g.
 - Zhang et al.: Reducing metal artifacts in cone-beam CT images by preprocessing projection data, Int J Radiat Oncol Biol Phys 67(3):924–932, March 2007
 - Veldkamp et al.: Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT, Med Phys 37(2):620–628, February 2010
- Lack of robustness in rawdata-based segmentation

Moving Metal Artifact Reduction (MMAR)

Requirements:

- Consider metal objects subject to (respiratory) motion
- Segment the complete metal shadow, not more, not less
- Solution: Combination of image-based and rawdatabased segmentation
 - Refinement of the search area in rawdata domain by using prior information from image domain
 - » Tolerant segmentation in image domain
 - » Forward projection
 - » Segment in rawdata domain
 - Interpolate to fill the segmented metal shadow with reasonable values.

Illustration of MMAR

Results

Results

Standard MAR-LI MMAR

Summary of Preliminary Results

- Moving metal artifact reduction (MMAR) achieves a
 - significant reduction of metal artifacts in case of patient motion,
 - reliable segmentation of the metal independent on motion.
- In cases of no motion MMAR reduces to MAR-LI.
- MMAR can be combined with other MAR approaches than MAR-LI, e.g. with NMAR¹.

[1] E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß. *Normalized metal artifact reduction* (*NMAR*) in computed tomography, Med. Phys. 37(10):5482-5493, October 2010

Thank You!

This study was supported by a grant of Varian Medical Systems, Palo Alto, CA.

Data provided by Dr. Fogliata-Cozzi and team, Instituto Oncologico della Svizzera Italiana, Bellinzona, Switzerland.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

