Sliding Organ Motion Regularization for Motion-Compensated Cone-Beam CT (CBCT) in Image-Guided Radiation Therapy

Sebastian Sauppe¹, Julian Kuhm¹, Pascal Paysan², Dieter Seghers², and <u>Marc Kachelrieß¹</u>

¹ German Cancer Research Center (DKFZ), Heidelberg, Germany ² Varian Medical Systems Imaging Laboratory, Baden-Dättwil, Switzerland

50 % 0 % 50 % 0 % 50 % 0 %

End-Inhale

End-Exhale

50 % 0 %

50 % 0 % Time

Projection angle

Amplitude

100 %

50 %

0 %

Introduction

Conventional: Motion blurring 3D

With gating: Sparse-view artifacts 4D

varian

C = -100 HU, W = 1200 HU Patient data provided by Wilko Verbakel, VU University Medical Center, Amsterdam.

Introduction

¹ Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, "Self-adapting cyclic registration for motion-compensated cone-beam CT in imageguided radiation therapy," Med. Phys. 39(12):7603-7618, 2012.

² Brehm, Paysan, Oelhafen, and Kachelrieß, "Artifact-resistant motion estimation with a patient-specific artifact model for motioncompensated cone-beam CT" Med. Phys. 40(10):101913, 2013.

³ Sauppe, Kuhm, Brehm, Paysan, Seghers, Kachelrieß. Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT. Phys. Med. Biol. 63:035032, 2018.

Conventional: Motion blurring 3D

acMoCo¹² PTAR³ 4D

C = -100 HU, W = 1200 HU Patient data provided by Wilko Verbakel, VU University Medical Center, Amsterdam.

Introduction

¹ Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, "Self-adapting cyclic registration for motion-compensated cone-beam CT in imageguided radiation therapy," Med. Phys. 39(12):7603-7618, 2012.

² Brehm, Paysan, Oelhafen, and Kachelrieß, "Artifact-resistant motion estimation with a patient-specific artifact model for motioncompensated cone-beam CT" Med. Phys. 40(10):101913, 2013.

³ Sauppe, Kuhm, Brehm, Paysan, Seghers, Kachelrieß. Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT. Phys. Med. Biol. 63:035032, 2018.

Conventional: Motion blurring 3D

acMoCo¹² PTAR³ 4D

C = -100 HU, W = 1200 HUPatient data provided by Wilko Verbakel, VU University Medical Center, Amsterdam.

Source: Wikipedia

Prior Art on Sliding Lung Motion (SLM)

• What has been done in the literature:

- Separate smoothing filters for tangential and perpendicular motion vectors¹
- Automated segmentation of a 3D lung border volume (motion mask) and application to patient data²
- Adaptive bilateral filter smoothing³
- Application to CBCT data⁴

- Our proposal:
 - Couple a bilateral filter regularization with a MoCo algorithm.
 - Apply the SLM filter to MoCo of very sparse CBCT data.

¹ Pace et al.: Deformable Image Registration Of Sliding Organs Using Anisotropic Diffusive Regularization, *Proc IEEE Int Symp Biomed Imaging*, 2011 ² Vandemeulebroucke et al.: Automated Segmentation Of A Motion Mask To Preserve Sliding Motion In Deformable Registration Of Thoracic CT, *Med Phys*, 2012 ³ Papiez et al.: An Implicit Sliding Motion Preserving Regularisation Via Bilateral Filtering For Deformable Image Registration, *Medical Image Analysis*, 2014 ⁴ Zhong et al.: 4D Cone Beam CT Reconstruction Using Multi Organ Meshes For Sliding Motion Modeling, *Physics in Medicine and Biology*, 2016

SLM Filter

- Generate a prior image representing lung and nonlung regions.
- The prior image incorporates knowledge of the organ's motion behaviour.

• Use the prior image to guide the MVF-regularizing filter step:

varian

dkfz.

Tangential vs. Perpendicular Filtering

Tangential motion transfer at the organ border

$$\hat{d}_{\parallel}(\boldsymbol{\rho}) = \frac{\int dx \, dy \, dz \, G_{\sigma_{\mathrm{e}}}(\boldsymbol{r}, \boldsymbol{\rho}) G_{\sigma_{\mathrm{g}}}(\boldsymbol{r}, \boldsymbol{\rho}) d_{\parallel}(\boldsymbol{\rho})}{\int dx \, dy \, dz \, G_{\sigma_{\mathrm{e}}}(\boldsymbol{r}, \boldsymbol{\rho}) G_{\sigma_{\mathrm{g}}}(\boldsymbol{r}, \boldsymbol{\rho})}$$

Perpendicular motion transfer at the organ border

Simulated Data Realistic Situation: Images with Streak Artifacts

Gated

acMoCo Gaussian Filter

acMoCo SLM Filter

Filter width 47 voxels (FWHM 25 voxels)

, Sliding lung border

MVF component in *z*-direction

Displacement between max. exhale and max. inhale phase.

varian

C = -250 HU, W = 1400 HU

Patient Data 4D MoCo with SLM Filter for MVFs

SLM: sliding lung motion

varian

C = -100 HU, W = 1200 HU Patient data provided by Wilko Verbakel, VU University Medical Center, Amsterdam.

Patient Data 4D MoCo with SLM Filter for MVFs

Conclusions

- The SLM filter allows for the suppression of nonphysiological bone motion.
- Streak artifact-induced motion in potentially static regions cannot be reduced without further prior knowledge.

Thank You!

This study was supported by Varian Medical Systems. This presentation will soon be available at www.dkfz.de/ct. Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.