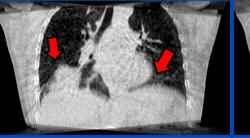
Respiratory and Cardiac Motion-Compensated 5D Cone-Beam CT of the Thorax Region

Sebastian Sauppe¹, Andreas Hahn¹, Marcus Brehm², Pascal Paysan², Dieter Seghers², and Marc Kachelrieß¹

¹ German Cancer Research Center (DKFZ), Heidelberg, Germany ² Varian Medical Systems Imaging Laboratory, Baden-Dättwil, Switzerland


A partner for life

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Slowly Rotating CBCT Devices

- **Image-guided radiation therapy** • (IGRT)
 - Cone-beam CT (CBCT) imaging unit mounted on gantry of a LINAC treatment system
- Siew Account for respiratory and cardiac motion Task: Account mus per scan)
- Heartbeat about 50 to 80 times per minute

kV Source

Linear Accelerator

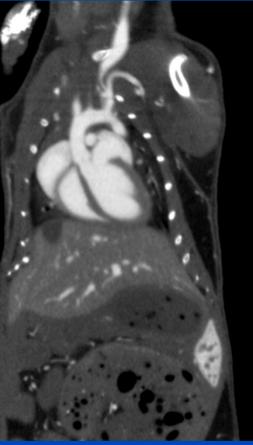
Detector

Motion blurring in standard **3D** reconstruction

5D Motion Compensation removes almost all motion blurrina

Aim

Provide high fidelity respiratory- and cardiaccorrelated volumes (5D volumes) from on-board CBCT scans without using dedicated acquisition techniques or prior knowledge from planning scans.


Use case:

Accurate patient positioning
» Reduce irradiation of the heart (organ at risk)
Treatment verification
Online treatment adaption

5D MoCo Mouse Data¹ Mouse with 280 bpm and 150 rpm

- 20 respiratory windows with $\Delta r = 10\%$ \bullet
- 10 cardiac windows with $\Delta c = 20\%$ \bullet
- rpm and bpm signal for gating • intrinsically determined

5D data displayed as: Heart: 360 bpm Lung: 180 rpm

VAR

N ¹M. Brehm, S. Sawall, J. Maier, S. Sauppe, and M. Kachelrieß. Cardiorespiratory motion-compensated micro-CT image reconstruction using an artifact model-based motion estimation. Med. Phys. 42(4):1948-1958, April 2015.

5D MoCo Mouse Data¹ Mouse with 280 bpm and 150 rpm

5D data displayed as: Heart: 360 bpm Lung: 180 rpm 5D data displayed as: Heart: 0 bpm Lung: 90 rpm 5D data displayed as: Heart: 90 bpm Lung: 0 rpm

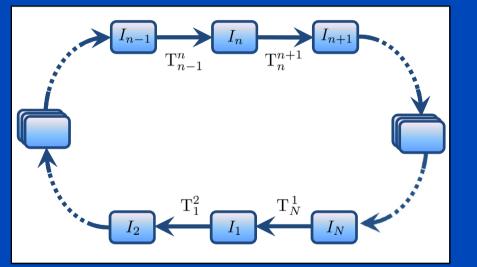
VA R A N ¹M. Brehm, S. Sawall, J. Maier, S. Sauppe, and M. Kachelrieß. Cardiorespiratory motion-compensated micro-CT image reconstruction using an artifact model-based motion estimation. Med. Phys. 42(4):1948-1958, April 2015.

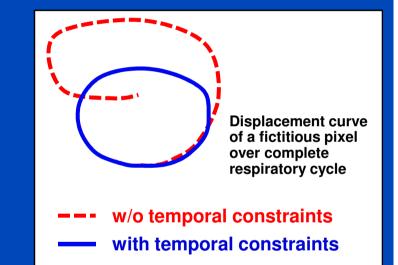
5D Motion Compensation on Patient Data

- Different geometry as micro CT scanner
 - Varian True Beam KV imaging system

Patients without contrast agent

- Lower contrast in the region of the heart
- Makes intrinsic cardiac motion signal detection more difficult
- Some patients have an irregular or slow breathing frequency





A Cyclic Motion Estimation and Compensation Approach (cMoCo)

Motion estimation only between adjacent phases

- All other MVFs given by concatenation

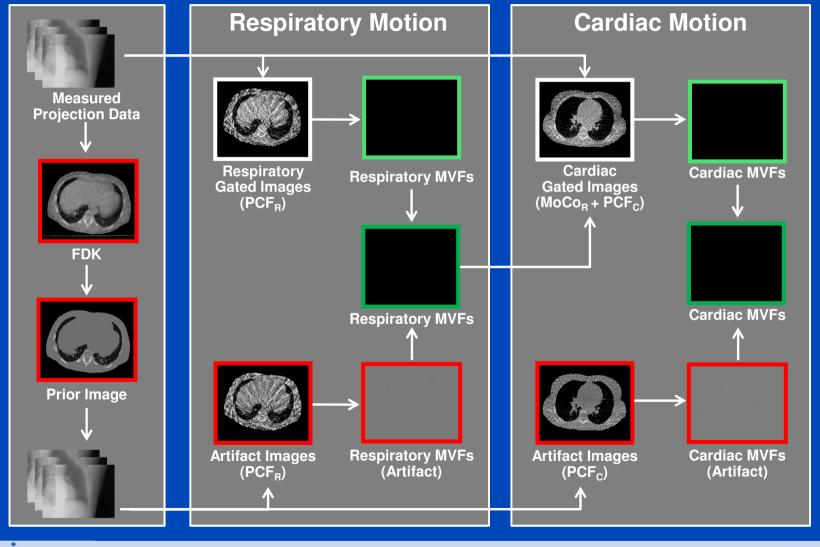
- Incorporate additional knowledge
 - A priori knowledge of periodic breathing and heartbeat pattern
 - Non-cyclic motion is penalized
 - Error propagation due to concatenation is reduced

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß,

VARAN "Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy," Med. Phys. 39(12), 7603-7618 (2012).

Motion Compensation (MoCo)

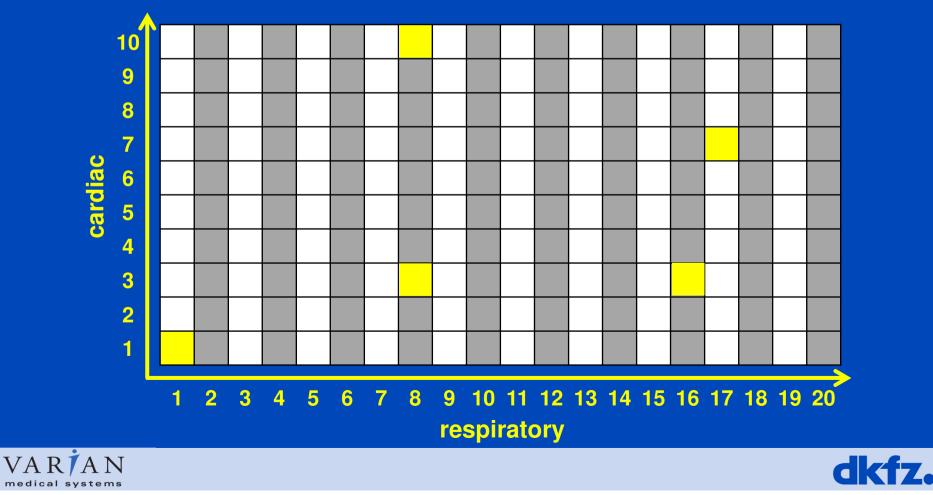
• **3D Reconstruction** $f = X^{-1} p$


- **4D MoCo** $f_{r} = \sum_{\rho} \mathsf{D}_{\rho}^{r} \mathsf{X}^{-1} \mathsf{G}_{\rho} p$ $\mathsf{D}_{\rho}^{r} = \prod_{J=\rho}^{r-1} \mathsf{T}_{J}^{J+1} = \mathsf{T}_{r-1}^{r} \circ \dots \circ \mathsf{T}_{\rho+1}^{\rho+2} \circ \mathsf{T}_{\rho}^{\rho+1}$
- **5D MoCo** $f_{\rm r,c} = \sum_{\rho,\gamma} \mathsf{D}_{\rho,\gamma}^{r,c} \mathsf{X}^{-1} \mathsf{G}_{\rho} \mathsf{G}_{\gamma} p$

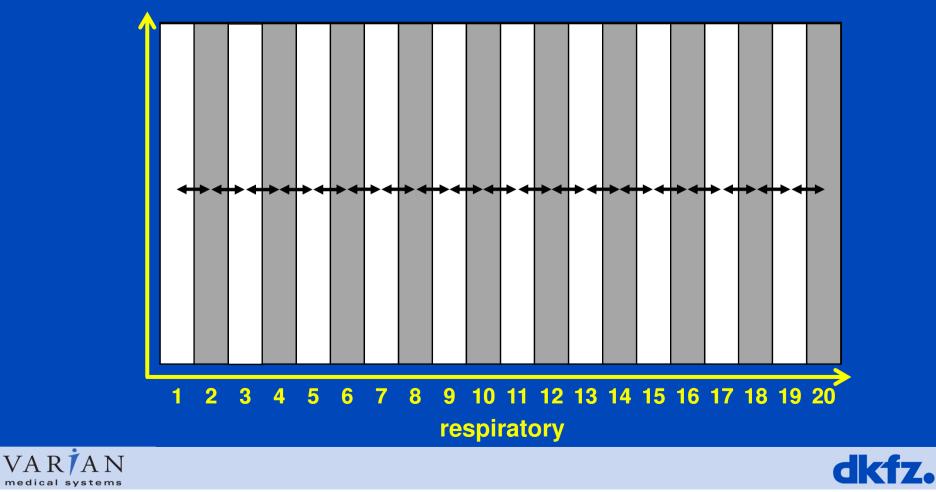
VAR AN

f	Image
Х	X-ray transform (forward projection)
X^{-1}	Backprojection (FDK)
p	Rawdata
$D^r_ ho$	Deformation operator
$G_{ ho}$	Gating operator
т	Transformation operator (between 2 motion phases)
0	Concatenation

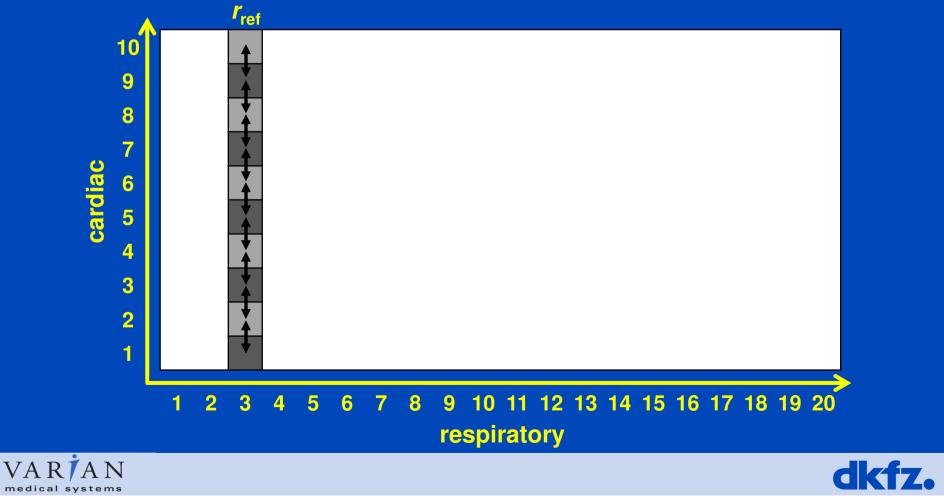
5D Motion Compensation Simplified Illustration of Workflow¹



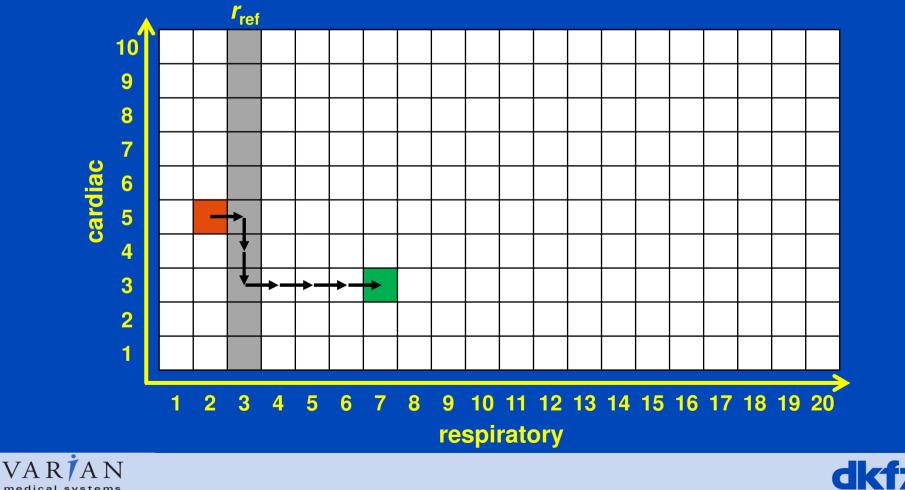
¹M. Brehm, Kachelrieß. Cardiorespiratory motion-compensated micro-CT image reconstruction using an artifact model-based motion estimation. Med. Phys. 42(4):1948-1958, April 2015.


5D Motion Compensation Double Gating

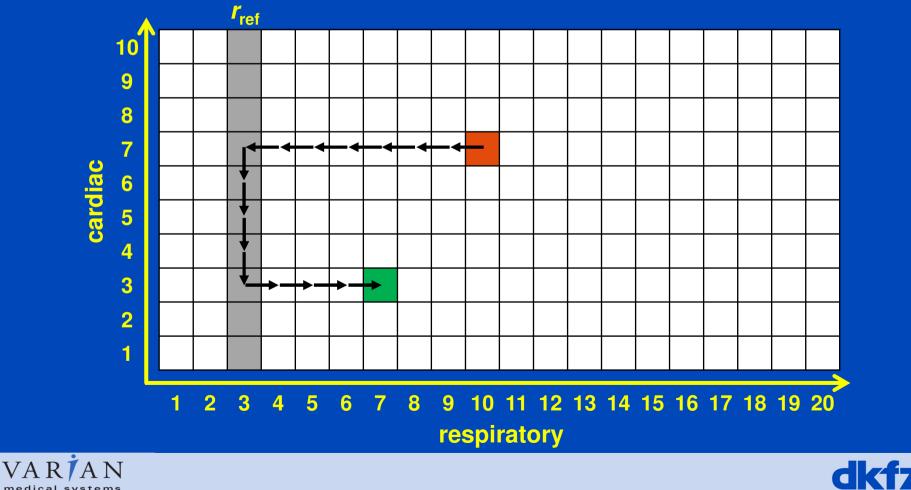
• Matrix represents all rawdata, sorted into different cardiac and respiratory bins (double gating)


5D Motion Compensation Respiratory Motion Estimation

Respiratory MVFs are estimated neglecting the effect of cardiac motion


5D Motion Compensation Cardiac Motion Estimation

• Cardiac MVFs are estimated employing respiratory motion-compensated and cardiac-gated images.


5D Motion Compensation MoCo Reconstruction

• Employing 5D double gated images, any arbitrary combination of respiratory and cardiac phase can be reconstructed.

5D Motion Compensation MoCo Reconstruction

• Employing 5D double gated images, any arbitrary combination of respiratory and cardiac phase can be reconstructed.

5D MoCo Results

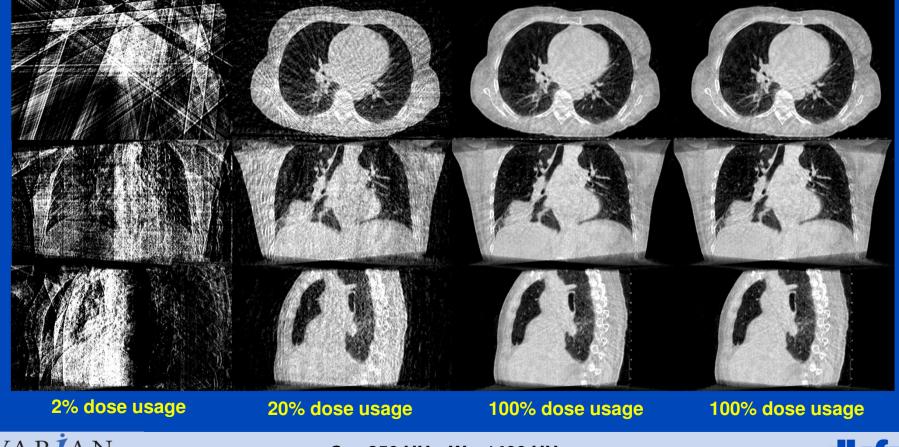
20 respiratory phases of 10% width, 10 cardiac phases of 20% width

5D Reconstruction Respiratory & Cardiac Gated

r = 0%, *c*-loop

5D Reconstruction Respiratory Compensated & Cardiac Gated *r* = 0%, *c*-loop

5D MoCo


Respiratory & Cardiac Compensated

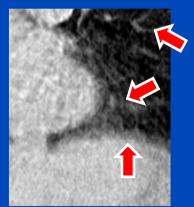
r = 0%, *c*-loop

5D MoCo Respiratory & Cardiac

Compensated

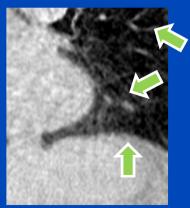
r-loop, *c* = 0%

C = -250 HU, W = 1400 HU


5D MoCo Results

20 respiratory phases of 10% width, 10 cardiac phases of 20% width

3D Reconstruction Standard 3D Feldkamp


3D Reconstruction Region of interest

5D MoCo Respiratory & Cardiac Compensated *r-loop, c*-loop

5D MoCo Region of interest

Displayed with real motion speed 28 rpm and 83 bpm

C = -250 HU, W = 1400 HU

Summary

- True 5D imaging in IGRT
 - Same noise level and spatial resolution as 3D CBCT
 - 100% dose usage
- Two-step motion estimation
- Method applicable for other modalities
 - E.g. C-arm systems, MR, PET-MR
- To do:
 - There is a slight underestimation of motion in 5D MoCo images
 - Handle sliding organ (esp. lung) motion
- There is more on MoCo from our group at this SPIE meeting:
 - Hahn, Kachelrieß. Reduction of motion artifacts in cardiac CT based on partial angle reconstructions from short scan data. Tuesday, March 1, 11:50 AM

Thank You!

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct. This study was supported by Varian Medical Systems, Baden, Switzerland. Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

MoCo 5D Results Respiratory Reference Phase Comparison

- Test: Repeat reconstruction of an arbitrary respiratory and cardiac phase (e.g. *r* = 5, *c* = 7) with different respiratory reference phases
- $r_{\text{ref}} \in \{0, ..., N-1\}, \text{ with } N = 20$
- Only grayscale differences visible
- No motion in difference images

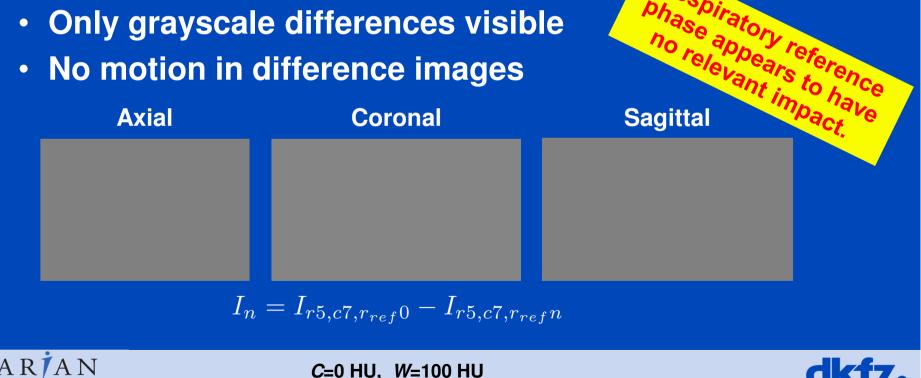
Axial

Coronal

Sagittal

Loop over all reference phases

C=-250 HU, *W*=1400 HU



MoCo 5D Results **Respiratory Reference Phase Comparison**

- Test: Repeat reconstruction of an arbitrary respiratory and cardiac phase (e.g. r = 5, c = 7) with different respiratory reference phases
- $r_{\text{ref}} \in \{0, ..., N-1\}, \text{ with } N = 20$

medical sve

- Only grayscale differences visible
- No motion in difference images

