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Coronary Motion

Publication Mean Velocity

RCA LAD LCX

Achenbach et al. 69.5 mm/s 22.4 mm/s 48.4 mm/s

Vembar et al. 47.0 mm/s 30.0 mm/s 31.0 mm/s

Husmann et al. 35.8 mm/s 20.2 mm/s 24.9 mm/s

Achenbach S., Ropers D., Holle J., Muschiol G., Daniel W. G., Moshage W. In-Plane Coronary
Arterial Motion Velocity: Measurement with Electron-Beam CT. Radiology 216(2):457-463, 2000.

Vembar M., Garcia M. J., Heuscher D. J., Matthews R. H., Böhme G. E., Greenberg N. L. A dynamic
approach to identify desired physiological phases for cardiac imaging using multislice spiral CT. 
Med. Phys. 30(7):1683-1693, 2003.

Husmann L., Leschka S., Desbiolles L., Schepis T., Gaemperli O., Seifert P., Cattin P., Frauenfelder 
T., Flohr T., Marincek B., Kaufmann P., Alkhadi H. Coronary Artery Motion and Cardiac Phases: 
Dependency on Heart Rate – Implications for CT Image Reconstruction. Radiology 245(2):567-576, 
2007.
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Contents

• Scans much faster than one motion cycle
– Cardiac CT

• Scans much slower than one motion cycle
– CBCT of the heart
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Siemens SOMATOM Force 
dual source cone-beam spiral CT

Cardiac CT
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Imaging the Heart with CT
(Cardiac-CT = phase-correlated CT)

• Periodic motion

• Synchronisation (ECG, Kymogram, …)

• Phase-correlated scanning = Prospective Gating
– Used in the 80s and 90s with little success.

– Comes into use again due to large cone-angles.

• Phase-correlated reconstruction = Retrospective Gating
– Single-phase (partial scan) approaches, e.g. 180°MCD

– Bi-phase approaches, e.g. ACV (Flohr et al.)

– Multi-phase Cardio Interpolation methods, e.g. 180°MCI (gold-standard)

– Generations

» Single-slice spiral CT: 180°CD, 180°CI (introduced 19961)

» Multi-slice spiral CT: 180°MCD, 180°MCI (introduced 19982)

» Cone-beam spiral CT: ASSR CD, ASSR CI (introduced 20003)

» Wide cone-beam CT: EPBP (introduced 20024)

» Multi-source CBCT: EPBP (introduced 20055)

1Med. Phys. 25(12):2417-2431 (1998), 2Med. Phys. 27(8):1881-1902 (2000), 3Proc. Fully 3D-2001:179-182 (2001),
4Med. Phys. 31(6): 1623-1641 (2004), 5Med. Phys. 33(7): 2435-2447 (2006)
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Retrospective Gating

=

Standard scan + ECG-correlated recon

Standard spiral scan with low pitch 

value ( p ≤ fH ⋅ trot )

Phase-correlated reconstruction

p ⋅ Trot / 2 ≤ Temp. resolution ≤ Trot / 2

Works also at high heart rates

Dose management: ECG-based TCM

Full phase selectivity

Highly robust  (also with arrhythmia)

Good dose usage 

Prospective Gating

=

ECG-triggered scan + standard recon

ECG-triggered sequence- or spiral scan 

with high pitch value

Standard image reconstruction

Temporal resolution = Trot / 2

Good at low heart rates

Dose management: inherent

No phase selectivity

Sufficiently robust  (not with arrythmia)

Very good dose usage
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t0 trot 2trot 3trot 6trot

Synchronization with the Heart Phase

Width, and thus teff, corresponds to the FWTM of the phase contribution profile.

teff = width / heart rate
e.g. 15% / 60 bpm = 150 ms

Heart motion

Kachelrieß et al., Radiology 205(P):215, (1997)

R R R R

Sync-Signal
ECG, Kymogram, ...

4trot 5trot

phase

width
∆c

Allowed data 
ranges
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Partial Scan Reconstruction

1. Detector
2. Detector
3. Detector
4. Detector

Time

Table 
position

Heartbeat 1 Heartbeat 2 Heartbeat 3

Use one segment 
of 180°+δ data
of phase-coherent data 
for a selected heart phase

1
Partial scan data
(180° + fan angle) 

Effective scan time

teff ≥ trot/2

teff  ≥ 200 ms 
at trot  = 0.4 s

Kachelrieß, Ulzheimer, Kalender, Med. Phys. 27(8):1881-1902 (2000)
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Multi-Segment Reconstruction

1

2

3

1. Detector
2. Detector
3. Detector
4. Detector

Time

Table 
position

Heartbeat 1 Heartbeat 2 Heartbeat 3

Partial scan data
(180° + fan angle)

Combine n segments
to obtain 180°+δ

of phase-coherent data 
for a selected heart phase

Effective scan time

teff ≥ 48 ms

typ. 75-150 ms 

at trot  = 0.4 s

Kachelrieß, Ulzheimer, Kalender, Med. Phys. 27(8):1881-1902 (2000)
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• Each voxel must be illuminated by the x-rays at least 
as long as one motion cycle of the heart takes

• The table increment per motion cycle must not be 
larger than the collimation of the scanner

• For example trot = 0.5 s and fH = 60 bpm imply that a 
pitch value of p < 0.5 must be chosen.

• The lower the pitch value the more segments can be 
combined in multi-segment image reconstruction.

Pitch Value and Full Phase Selectivity
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Diastole

Systole

Dual-source-CT, 330 ms rotation, partial scan reconstruction, 83 ms temporal resolution

Data courtesy of Stephan Achenbach, Erlangen, Germany
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Calcified in RCA
Dual Source CT in Turbo Flash Mode
737 mm/s scan speed
143 ms scan time
63 ms temporal resolution
70 kV tube voltage
39 mGy⋅cm dose length product (DLP)
0.55 mSv effective dose

Data courtesy of Stephan Achenbach, Erlangen, Germany
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RCA

LAD LCX
LCX

DSCT = Best Possible Cardiac CT

Data courtesy of Stephan Achenbach, Erlangen, Germany
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Motion Artifacts May Still be Present

• In cardiac CT, the imaging of small and fast 
moving vessels places high demands on 
the spatial and temporal resolution of the 
reconstruction.

• Mean displacements of �	 �
�
���

�
	 �̅ �

	
�
�

�
	ms	50

��

�
� 6.25	mm		are possible (RCA 

mean velocity measurements[1,2,3,4]).      

• Standard FDK- based cardiac 
reconstruction might have an insufficient
temporal resolution introducing strong 
motion artifacts. 

[1] Husmann et al. Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate -
Implications for CT Image Reconstruction. Radiology, Vol. 245, Nov 2007.
[2] Shechter et al. Displacement and Velocity of the Coronary Arteries: Cardiac and 
Respiratory Motion. IEEE Trans Med Imaging, 25(3): 369-375, Mar 2006
[3] Vembar et al. A dynamic approach to identifying desired physiological phases for 
cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.
[4] Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-
beam CT. Radiology, Vol. 216, Aug 2000.
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const

Heart Rate Variability =
Diastolic Phase Variability

• Unless some pathology of the nervous connections are there, the HR 
variability is caused by irregular trigger from the sinoatrial (SA) node.

• The diastolic phase can be interrupted by that trigger.

• The distance between P, Q, R, S, T waves only depends on the 
electrical signal transmission, and is repeated as a constant pattern in 
absence of specific pathologies.

• Changes in heart rate typically only affect the diastolic phase duration.

• Normally, systolic phase scanning is preferred for fH >75 bpm.
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Phase Selection:
Relative vs. Absolute - % vs. ms

• Relative phase selection (in %) is not suggested if the HR has a high 
variability (> 5 bpm) because the data window could fall into very 
different cycle phases.

• When using absolute phase selection (in ms), a negative delay has to 
be selected for diastolic phase: it happens before the R peak. 

• Caution: For relative phase selection and for absolute diastolic phase 
selection the scanner needs to predict the next R peak.

65% 65% 65%
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Q
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T P

Q
S

T P

Q
S

T P

Q
S

T

. . .

R R R R

relative phase selection
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Phase Selection:
Relative vs. Absolute - % vs. ms

• Relative phase selection (in %) is not suggested if the HR has a high 
variability (> 5 bpm) because the data window could fall into very 
different cycle phases.

• When using absolute phase selection (in ms), a negative delay has to 
be selected for diastolic phase: it happens before the R peak. 

• Caution: For relative phase selection and for absolute diastolic phase 
selection the scanner needs to predict the next R peak.

-300 ms -300 ms -300 ms
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Q
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. . .

R R R R

absolute phase selection (diastole)
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Phase Selection:
Relative vs. Absolute - % vs. ms

• Relative phase selection (in %) is not suggested if the HR has a high 
variability (> 5 bpm) because the data window could fall into very 
different cycle phases.

• When using absolute phase selection (in ms), a negative delay has to 
be selected for diastolic phase: it happens before the R peak. 

• Caution: For relative phase selection and for absolute diastolic phase 
selection the scanner needs to predict the next R peak.

+250 ms
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.
+250 ms +250 ms

. .

R R R R

absolute phase selection (systole)
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• Retrospective gating = low pitch spiral (very robust, allows 
retrospective ECG editing)

• Prospective gating (triggering) = sequence scan (step-and-shoot, skips 
1 or 2 beats and ectopic beats) or high pitch spiral

• Unstable heart rate requires either retrospective gating or prospective 
gating with an adaptive window (e.g. low dose from 50% to 80% and 
full dose from 60% to 70%).

• For stable (variability < 4 bpm) and low (< 60 bpm) heart rates, one may 
perform a high pitch spiral scan (on DSCT) in diastolic phase (systolic 
phase is too short). One may scan caudo-cranial to have the ventricle 
(at higher risk to move) scanned first.

Prospective vs. Retrospective Gating
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retrospective gating (low pitch spiral)
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• Retrospective gating = low pitch spiral (very robust, allows 
retrospective ECG editing)

• Prospective gating (triggering) = sequence scan (step-and-shoot, skips 
1 or 2 beats and ectopic beats) or high pitch spiral

• Unstable heart rate requires either retrospective gating or prospective 
gating with an adaptive window (e.g. low dose from 50% to 80% and 
full dose from 60% to 70%).

• For stable (variability < 4 bpm) and low (< 60 bpm) heart rates, one may 
perform a high pitch spiral scan (on DSCT) in diastolic phase (systolic 
phase is too short). One may scan caudo-cranial to have the ventricle 
(at higher risk to move) scanned first.

Prospective vs. Retrospective Gating

P

Q
S

T P

Q
S

T P

Q
S

T P

Q
S

T

R R R R

prospective gating (sequence scan)
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• Retrospective gating = low pitch spiral (very robust, allows 
retrospective ECG editing)

• Prospective gating (triggering) = sequence scan (step-and-shoot, skips 
1 or 2 beats and ectopic beats) or high pitch spiral

• Unstable heart rate requires either retrospective gating or prospective 
gating with an adaptive window (e.g. low dose from 50% to 80% and 
full dose from 60% to 70%).

• For stable (variability < 4 bpm) and low (< 60 bpm) heart rates, one may 
perform a high pitch spiral scan (on DSCT) in diastolic phase (systolic 
phase is too short). One may scan caudo-cranial to have the ventricle 
(at higher risk to move) scanned first.

Prospective vs. Retrospective Gating
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prospective gating (high pitch spiral)
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Motion Artifacts May Still be Present!

• In cardiac CT, the imaging of small and fast 
moving vessels places high demands on 
the spatial and temporal resolution of the 
reconstruction.

• Mean displacements of �	 �
�
���

�
	 �̅ �

	
�
�

�
	ms	50

��

�
� 6.25	mm		are possible (RCA 

mean velocity measurements[1,2,3,4]).      

• Standard FDK- based cardiac 
reconstruction might have an insufficient
temporal resolution introducing strong 
motion artifacts. 

[1] Husmann et al. Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate -
Implications for CT Image Reconstruction. Radiology, Vol. 245, Nov 2007.
[2] Shechter et al. Displacement and Velocity of the Coronary Arteries: Cardiac and 
Respiratory Motion. IEEE Trans Med Imaging, 25(3): 369-375, Mar 2006
[3] Vembar et al. A dynamic approach to identifying desired physiological phases for 
cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.
[4] Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-
beam CT. Radiology, Vol. 216, Aug 2000.
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Motion Compensation
is the Future!
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• For single source systems, several algorithmic motion 
compensation (MoCo) solutions have been developed. These may 
be also useful for DSCT.

• In view of dose-optimized scan protocols, we want to focus on 
methods, which utilize only the data needed for the reconstruc-
tion of a single cardiac phase (short scan data ≙	180° + fan angle).

• Especially beneficial in cases of patients with high or irregular 
heart rates or non-optimally chosen gating positions.

Reducing Motion Artifacts in Cardiac CT

c = 71%

Best phase

c = 66%

Non-optimally chosen 
gating position

C = 300 HU; W = 1500 HU
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Algorithms to Improve Temporal 
Resolution in Cardiac CT

Data 

Range

Anatomical

Landmarks

Dose

Usage

MVFs

Taguchi et al. (Johns Hopkins) 1 heart cycle no 100% yes

SSF, Bhaglia et al. (GE) >> 180° arteries << 100% yes

SSF+MEAD, Nett et al. (GE) >> 180° arteries << 100% yes

Tang et al. (Toshiba) >> 180° arteries << 100% yes

Kim et al. (KAIST) > 180° no < 100% yes

TRI-PICCS, Chen et al. (UW) 180° no < 100% no

TRIM, Schöndube et al. (Siemens) 180° arteries < 100% no

MAM, Rohkohl et al. (Siemens) 180° arteries 100% yes

PAMoCo, Hahn et al. (DKFZ) 180° arteries 100% yes

All algorithms can potentially also be applied to DSCT. However, this has not been done, yet.
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ROI

Initial segmented stack volume

Subdivide the projection data 
into 2K + 1 overlapping sectors

k = 0

Partial angle reconstructions

FWHM = K = 15

PAMoCo
Generation of 2K+1 PARs

J. Hahn, M. Kachelrieß et al. Reduction of motion artifacts in cardiac CT based on partial angle recon-
structions from short scan data. SPIE Medical Imaging Conference Record 97831A:1-9, March 2016.
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Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

Slice 31

sagittal view
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Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

Slice 44

sagittal view
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Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

Slice 54

sagittal view



44

Patient 1

HR = 74 bpm, c = 30%,
C = 400 HU, W = 1500 HU

PAMoCo with Nt×Nλ×3 = 3×3×3 = 27
parameter each stack

FBP PAMoCo

curved MPRs of the RCA
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FBP PAMoCo

curved MPRs  created with syngo.via

�� = 70 bpm, c = 50%,
C = 400 HU, W = 1500 HU

stack borders

Patient 2
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Slowly Rotating CBCT Devices

• Image-guided radiation therapy 
(IGRT)

– Cone-beam CT (CBCT) imaging unit 
mounted on gantry of a LINAC 
treatment system

– Accurate information about patient 
motion required for radiation therapy

• Slow gantry rotation speed of 6°
per second (60 s/360°)

– Much slower than clinical CT devices 

• Breathing about 10 to 30 
respiration cycles per minute 
(and thus per scan)

• Heartbeat about 50 to 80 beats
per minute 

Motion blurring in standard 
3D reconstruction

5D* Motion Compensation 
removes almost all motion 

blurring

Account for patient motion!

Detector
kV Source

Linear Accelerator

Gantry
Rotation

*Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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• Motion estimation via 
standard 3D-3D registration

• Has to be repeated for each
reconstructed phase

• Streak artifacts from gated reconstructions propagate 
into sMoCo results

Gated 4D CBCT

A Standard Motion Estimation and 
Compensation Approach (sMoCo)

sMoCo

Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” 
Med. Phys. 51(9), 3688–3695 (2007).
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• Motion estimation only between adjacent phases 

• Incorporate additional knowledge
– A priori knowledge of quasi periodic breathing pattern

– Non-cyclic motion is penalized

– Error propagation due to concatenation is reduced

Motion Estimation 
with Cyclic Regularization (cMoCo)

Displacement curve
of a fictitious pixel
over complete 
respiratory cycle

w/o temporal constraints

with temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-compensated 
cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12), 7603-7618, 2012.
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Motion Estimation
with Artifact-Model-Based Regularization (aMoCo)

Virtual rawdata:Measured data:

Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific 
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.

Gated 4D CBCT 4D Artifact Images

Segmented Image3D CBCT
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Patient Data – Results

sMoCo
Standard Motion 
Compensation

3D CBCT
Standard

Gated 4D CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

C = -200 HU, W = 1400 HU
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What about the 
Heart?
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Data displayed as:

Heart: 280 bpm

Lung: 150 rpm

Mouse with 150 rpm and 280 bpm.
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Data displayed as:

Heart: 90 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 0 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Mouse with 180 rpm and 240 bpm.

Data displayed as:

Heart: 90 bpm

Lung: 0 rpm
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5D with Double Gating?
Double gating example:

• Cardiac window width: 20%
• Respiratory window width: 10%

• Only 2% of all projections per reconstructed volume

t
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

respiratory

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

respiratory

c
a
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10

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.



65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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respiratory

c
a
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5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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respiratory

c
a
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c

5D Motion Compensation

1
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5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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MoCo 5D Results
20 respiratory phases of 10% width, 10 cardiac phases of 20% width

PCF 5D
Respiratory & Cardiac 

Gated

PCF 5D
Respiratory 

Compensated & 
Cardiac Gated

C=-250 HU,  W=1400 HU

acMoCo 5D
Respiratory & Cardiac 

Compensated
r-loop, c = 0%

acMoCo 5D
Respiratory & Cardiac 

Compensated
r = 0%, c-loop 
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Spin-Off Effects?
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3D reconstruction
motion average

5D reconstruction
resp & card gated

r = 1, c-loop

5D reconstruction
resp MoCo & card gated

r = 1, c-loop

5D MoCo
resp & card MoCo

r = 1, c-loop

total acquisition time: 1 min 55 s, radial undersampling = 36

5D MR Motion Compensation
Results Patient c12
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3D PET
motion average

5D double-gated PET
r = 1, c-loop

5D MoCo PET
r = 1, c-loop

5D MoCo MR
r = 1, c-loop

0

SUV

7

0

SUV

7

0

SUV

7

5D PET/MR Motion Compensation
Results Patient s04
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Thank You!

• This presentation will soon be available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (www.dkfz.de), or through Marc Kachelriess 
(marc.kachelriess@dkfz.de). 

• Parts of the reconstruction software were provided by RayConStruct®

GmbH, Nürnberg, Germany.


