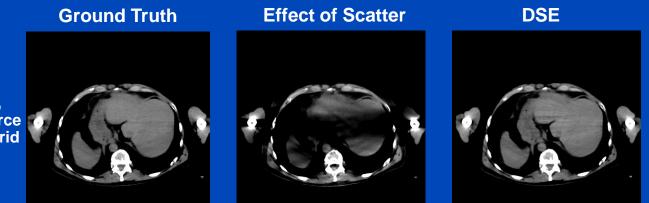
Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT

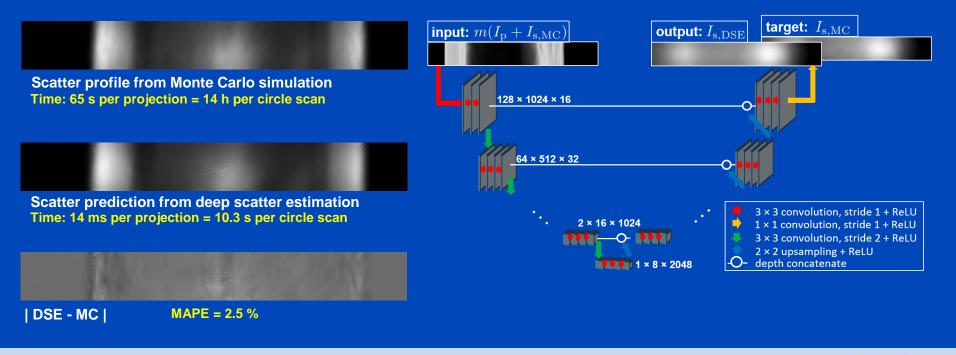
Julien Erath^{1,2,3}, Carolin Langner¹, Joscha Maier¹, Eric Fournie², Karl Stierstorfer², and Marc Kachelrieß^{1,3}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Siemens Healthineers, Forchheim, Germany ³Ruprecht-Karls-Universität, Heidelberg, Germany


www.dkfz.de/ct

Motivation

- Scatter degrades image quality in CT
- Correct scatter using Monte Carlo (MC) simulations
 - Very long computation times
 - Prior knowledge (first recon) necessary
 - Has to be adapted to different scanner geometries
- Recently: simulation-based deep scatter estimation (sbDSE) – requires MC in training phase
- Aim: Design phantom to train DSE measurement-based (mbDSE) – no need for MC


C = 40 HU, W = 300 HU, Geometry of Somatom Force but without anti-scatter grid

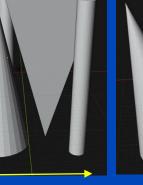
Health

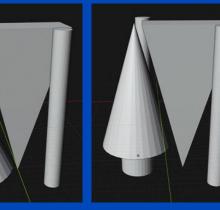
ENS J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

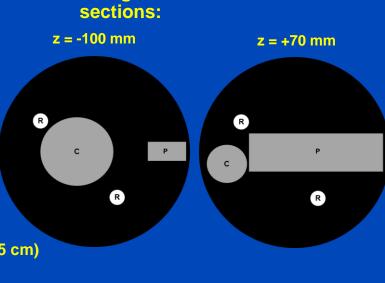
Deep Scatter Estimation (DSE)

- Use a deep convolutional neural network to estimate scatter using the acquired projection data as input.
- Train the network to predict Monte Carlo scatter estimates based on the acquired projection data.
- DSE outperforms other scatter estimation techniques.
- DSE is much faster than the Monte Carlo simulation.

SIEMENS J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018. J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.


Measurement-Based DSE


- Design a phantom that is easy to manufacture and to simulate
- Subtract simulated from the measured intensities to obtain scatter
- Train DSE with these data pairs: mbDSE
- Phantom contains a cone, a pyramid and two rods to cover a large range of typical attenuation values, e.g. 0 to 40 cm soft tissue, 0 to 5 cm bone, ...
- Phantom is scanned in various configurations


Example configurations obtained by rotations and translations

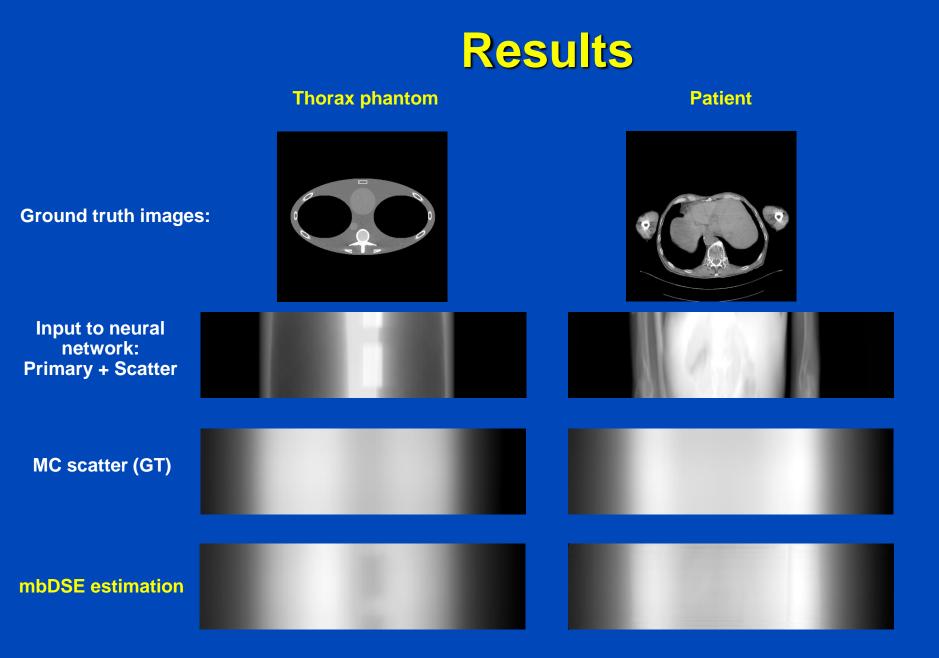
Ζ

Along z we obtain different cross

C = PE cone (diameter from 10 cm to 28 cm) P = PE pyramid (from 35 cm × 10 cm to 10 cm × 5 cm) R = Teflon rod (4 cm diameter)

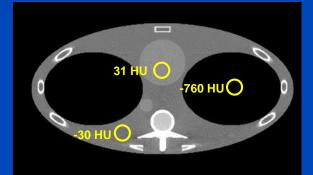
Generation of Training and Test Data

- Simulate $I_{Primary}$ by polychromatic forward projection
- In ideal condition we can measure: $I_{\text{Measured}} = I_{\text{Primary}} + I_{\text{Scatter}}$
- So we obtain: $I_{\text{Scatter}} = I_{\text{Measured}} I_{\text{Primary}}$
- Neural network will get pairs of projection containing: $I_{\rm Primary} + I_{\rm Scatter}$ and $I_{\rm Scatter}$

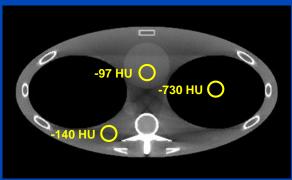


Disclaimer

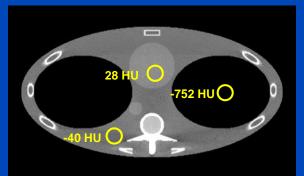
We have not yet manufactured the phantom. Therefore we simulate the phantom measurements. The results shown are based on these simulations.



C = 0.01, W = 0.01



Results: Thorax Phantom


Ground truth (no scatter)

Uncorrected (with scatter)

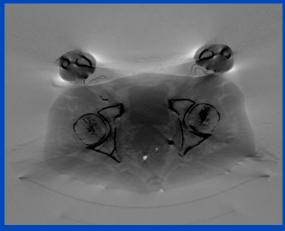
mbDSE-corrected

Difference reconstruction to ground truth

MAE: 52 HU

C = 0 HU, W = 600 HU

Results: Patient Example 1


Uncorrected (with scatter)

mbDSE-corrected

Difference Reconstruction to Ground Truth

MAE: 82 HU

MAE: 9 HU

C = 0 HU, W = 400 HU

Results: Patient Example 2

SIEMEN

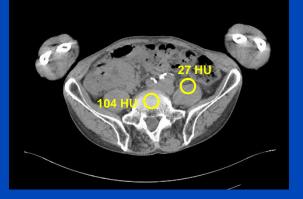
Healthineers

Ground truth (no scatter)

Uncorrected (with scatter)

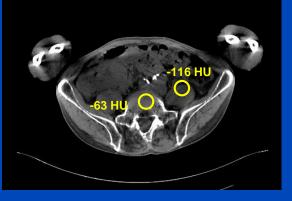
mbDSE-corrected

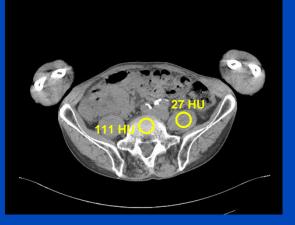
MAE: 80 HU


MAE: 12 HU

C = 0 HU, W = 400 HU

Results: Patient Example 3


Ground truth (no scatter)


SIEMENS

Healthineers

Uncorrected (with scatter)

mbDSE-corrected

Difference Reconstruction to Ground Truth

MAE: 90 HU

MAE: 8 HU

C = 0 HU, W = 400 HU

Summary and Outlook

- DSE can be trained with measured phantom data to estimate forward scatter of unseen patients.
- mbDSE is able to accurately estimate scatter in clinical CT.
- Limitations:
 - Currently, mbDSE was only evaluated in a simulation study.
 - Many configurations of the phantom are needed.
- Future work:
 - Develop a phantom where a single configuration is sufficient for mbDSE.
 - Manufacture this phantom and use real measurements for mbDSE training.

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.