# Motion Vector Field Estimation and Motion–Compensated Reconstruction for Flat Detector Cone–Beam CT Scans of Breathing Patients

Marcus Brehm<sup>1,2</sup>, Pascal Paysan<sup>3</sup>, Markus Oelhafen<sup>3</sup>, Patrik Kunz<sup>3</sup>, and Marc Kachelrieß<sup>1,2</sup>

presented by Matthias Baer<sup>1,2</sup>

<sup>1</sup>German Cancer Research Center (DKFZ), Heidelberg, Germany <sup>2</sup>Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany <sup>3</sup>Varian Medical Systems, Baden-Dättwil, Switzerland







# 4D Cone–Beam CT (4DCBCT) on Slowly Rotating CBCT Devices



- CBCT imaging unit (kV source and flat panel detector) mounted on the gantry of a linear particle accelerator (LINAC) treatment system
- Comes with a maximum gantry rotation speed of 6° per second
- Much slower than clinical CT devices (60 s/360° versus 0.3 s/360°)
- Cycle of respiratory motion usually in the magnitude of 2 – 5 seconds, i.e. 10 – 30 respirations per scan
- Artifacts in 3DCBCT and conventional 4DCBCT



3DCBCT ⇒ Motion artifacts



Conventional 4DCBCT ⇒ Angular sampling artifacts





Provide high quality respiratory-correlated 4D volumes from on-board CBCT scans without using dedicated acquisition techniques or knowledge from prior planning scans.



# **Motion Compensation (MoCo)**

#### Combine benefits

- High temporal resolution of conventional 4DCBCT
- Low noise level from 3DCBCT

#### Use ALL projection data

- For each single 3D volume of a 4D data set
- Compensate for motion using motion vector fields (MVF)
- MVF are estimated based on conventional 4DCBCT images

#### Backproject then warp [1]

- Backprojection of projection data along straight lines
- Then warp with respect to MVF

[1] Li et al., "*Motion correction for improved target localization with on–board cone–beam computed tomography*," Phys. Med. Biol., vol. 51, no. 2, pp. 253–267, Feb. 2006.

#### Ground truth in phase 1



Backprojection on (straight) acquisition lines of one projection acquired in phase 2



#### Backprojection wraped to phase 1



### A Cyclic Registration with Temporal Constraints

- Initial guess of MVF  $T_i^{j+1}$  between adjacent phases<sup>[1]</sup>
  - Using a spatial registration algorithm
- Add temporal constraint
  - Cyclic form of breathing motion patterns  $\Rightarrow$  Error estimate E
  - Minimization by applying the error estimate on the estimated vector fields





#### **Iterative Motion Estimation**



dkfz.

### **Results for Simulated Data**



 Clinical CT data of a patient thorax deformed with respect to realistic vector fields to simulate breathing

C = -200 HU, W = 1400 HU



#### **Results for Simulated Data**

**3DCBCT** 

**Ground Truth (GT)** 



Standard MoCo



Our MoCo

**Conventional 4DCBCT** 







Our MoCo: Motion-compensated image reconstruction applying MVFs from our iterative motion estimation based on a cyclic registration with temporal constraints

- High temporal and high spatial resolution
- Low noise level and visibility of lung details

C = -200 HU, W = 1400 HU



#### **Results for Patient Data**

Ground Truth (GT)

Not Available

**3DCBCT** 

**Conventional 4DCBCT** 



Standard MoCo



Our MoCo





Our MoCo: Motion-compensated image reconstruction applying MVFs from our iterative motion estimation based on a cyclic registration with temporal constraints

#### Similar impressions as with the simulated data



Acquired with an On–Board Imager<sup>®</sup> Varian Medical Systems, Palo Alto, CA



# Summary

- Iterative motion estimation using a cyclic registration with temporal constraints
  - Allows for estimation of motion vector fields from conventional 4DCBCT images
  - Decreased sensitivity to angular sampling artifacts
  - No dedicated acquisition technique required
  - No knowledge required from prior scans like planning CTs
- Motion-compensated image reconstruction applying these motion vector fields
  - Combine benefits of 3DCBCT and 4DCBCT
    - » High spatial and high temporal resolution
    - » Low image noise
  - Visibility of lung details



# Thank You!

This study was supported by a grant of Varian Medical Systems, Palo Alto, CA. Parts of the reconstruction software were provided by RayConStruct<sup>®</sup> GmbH, Nürnberg, Germany.

This presentation will be soon available at www.dkfz.de/CT

