Motion-Compensated 4D Cone-Beam Computed Tomography

Marcus Brehm¹, Timo Berkus², Markus Oehlhafen², Patrik Kunz², <u>Marc Kachelrieß</u>^{1,3}

¹ Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
² Varian Medical Systems, Baden-Dättwil, Switzerland
³ German Cancer Research Center (DKFZ), Heidelberg, Germany

Image Guidance for Radiation Therapy

Linac with on-board imaging

- Limited data acquisition frame rate
- Slow gantry rotation (\geq 60 s per 360°)
- Requires phase-correlated reconstruction to avoid motion artifacts

- Aims for the new 4D algorithm:
 - Decrease of motion artifacts
 - Increase temporal resolution
 - Decrease image noise
 - Increase dose usage

Reconstruction Techniques

• Feldkamp^[1] (FDK)

- All projections used
- <u>Non</u> phase-correlated \Rightarrow motion artifacts

Phase-Correlated Feldkamp (PCF)

- Feldkamp applied on phase bins
- Only phase-correlated projections used
 - » Streak artifacts
- McKinnon-Bates^[2] (MKB)
 - Initial image with Feldkamp
 - Adding correction image based on phase-correlated projections

McKinnon-Bates Algorithm

Motion Compensation

Backprojection of projections of phase j

 $f_j(x,y,z)$

• Time-dependent transformation $T_{j,i}$ $f_i(x, y, z) \approx T_{j,i}[f_j](x, y, z)$

Motion compensation

 $f_i(x, y, z) \approx \frac{1}{N} \sum_{j=1}^N \mathcal{T}_{j,i}[f_j](x, y, z)$

Li et al., *Motion correction for improved target localization with on-board cone-beam computed tomography*, Phys Med Biol, 51(2), 2006, 253–267

Motion-Compensated Reconstruction in Image-Guided Radiation Therapy

- Motion modeling by
 - registration of 4D clinical CT data set^{1,2}
 - registration of PCF to clinical CT data set³
 - registration of PCF reconstructions with each other³
 - » A large number of projections is required
 - » In measurements the multiply-gantry rotation technique was used
 - Almost artifact-free PCF reconstructions were demonstrated^{1,2,3}
- Our new approach should work
 - for a low number of projections (no special acquisition technique)
 - without need of clinical CT data

¹Li et al., *Motion correction for improved target localization with on-board cone-beam computed tomography*, Phys Med Biol, 51(2), 2006, 253–267 ²Rit et al., *On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion*, Med Phys, 36(6), 2009, 2283–2296 ³Li et al., *Enhanced 4D cone-beam CT with inter-phase motion model*, Med Phys, 34(9), 2007, 3688–3695

Our Approach

- Determination of motion vector fields (MVFs) via non-rigid registration of 4D CBCT reconstructions
 - CBCT data itself are used
 - No need of clinical CT data
 - » Eliminates influence of variation in tissue and motion between CBCT and clinical CT data acquisition
 - Demons algorithm^[1] with symmetric forces^[2] and step width control
 - » Intensity-based non-rigid registration algorithm (optical flow)
- Use of MKB instead of PCF reconstructions in registration process
 - Robustness due to decreased impact of sparsifying artifacts on the registration process

Illustration of the Approach

Motion compensation (MC) for phase bin $i \in [1, N_{ ext{Phases}}]$

Simulations and Measurements

- On-board flat panel CBCT (Varian True Beam)
 - 60 s full-scan
 - 651 projections
- Simulation
 - Clinical CT data set as phantom
 - Realistic MVFs generated and added
 - Laterally extended detector
 - Quantum noise added
- Measurements
 - Shifted detector to avoid truncation
- Reconstruction
 - 20 phase bins (size = 10%)

Simulation (Mid-Inhale)

Simulation (All Phases)

Profiles (Mid-Inhale)

Patient Data (End-Inhale)

Patient Data (All Phases)

Conclusions and Outlook

- Low image noise due to full dose usage
- Significantly reduced motion artifacts
- Robustness to undersampling artifacts
- No necessity to rely on the planning data from clinical CT
- Changes in organ and tumor size and position can be correctly detected
- Outlook
 - Detect motion vector fields directly from the PCF images
 - Improve motion vector field consistency by imposing cyclic constraints
 - Iteratively improve on the motion vector fields and on image quality

Thank You!

This work was supported by a grant of Varian Medical Systems, Palo Alto, CA.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.