November 30, 2011, RSNA

Comparison of Two Conceptually Different Classes of Metal Artifact Reduction (MAR) Algorithms for Clinical CT

Esther Meyer^{1,2}, Nicole Maaß¹, Rainer Raupach², Bernhard Scmidt², Michael Lell¹, Marc Kachelrieß^{1,3}

¹ Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany
² Siemens Healthcare, Forchheim, Germany
³ German Cancer Research Center (DKFZ), Heidelberg, Germany

SIEMENS dkfz.

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Introduction

Aim:

To compare two algorithms for metal artifact reduction (MAR) in CT with respect to...

- the concept
- and the reduction of artifacts.

Metal Artifacts:

- Noise
- Beam hardening
- Scatter
- Nonlinear partial volume effect

Replacement

Correction

Normalized Metal Artifact Reduction (NMAR)

E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys., 37(10):5482-5493, October 2010.

Results: NMAR

Uncorrected image

NMAR image

Patient with bilateral hip endoprosthesis, Siemens Somatom Definition

Empirical Beam Hardening and Scatter Correction (EBHSC)

E. Meyer, C. Maaß, M. Baer, R. Raupach, B. Schmidt, and M. Kachelrieß, "Empirical Scatter Correction (ESC): A New CT Scatter Correction Method and its Application to Metal Artifact Reduction", IEEE Medical Imaging Conference Record 2010, pp. 2036-2041, 2010.

Basis Images

Beam Hardening Basis Images*

p: beam hardening-corrected projections p_0 : water-precorrected projections of tissue p_m : projections of metal

$$p(p_0, p_m) = \sum_{ij} c_n p_0^i p_m^j =$$

= $p_0 + c_1 p_m + c_2 p_0 p_m + c_3 p_m^2 + \dots$
R⁻¹ R⁻¹ R⁻¹ R⁻¹

Scatter Basis Images

- I_{S} : Scatter intensity
- I_F : Forward scatter intensity
- *K* : Scatter kernel

 $I_{S}(a,b,c) = I_{F}(a) * K(b,c)$

Different sets of model parameters^{**} a, b, c

*Y. Kyriakou, E. Meyer, D. Prell, and M. Kachelrieß, "Empirical beam hardening correction (EBHC) for CT", Med. Phys., vol. 37, pp. 5179-5187, 2010. **B. Ohnesorge et al., "Efficient object scatter correction algorithm for third and fourth generation CT scanners," EuRad., vol. 9, pp. 563-569, 1999.

Results: EBHSC

Uncorrected image

EBHSC image

Patient with bilateral hip endoprosthesis, Siemens Somatom Definition

Results - Comparison

Uncorrected

NMAR

EBHSC

Results - Comparison

NMAR

Mean difference of ROIs in **artifacts** compared to **baseline**

	Uncorr	EBHSC	NMAR
Mean Difference	128 HU	14 HU	5 HU

ertifact beseline EBHSC C=100/W=1000

Conclusion

- Full replacement by NMAR is a robust method for different kinds of implants, especially for implants with dense materials or small implants.
- For less dense implants, EBHSC is a good alternative. It is based on a physical modeling of artifacts and all available data are used.

Thank You!

This study was supported by Siemens Healthcare, Forchheim, Germany.

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

