Joint Hardware and Patient Attenuation Correction for Hybrid PET/MR Imaging

Thorsten Heußer, Yannick Berker, Martin Freitag, and Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany

Aim

Current PET/MR status

• Aim: To improve patient AC for non-TOF PET/MR.

- Algorithms (all based on MLAA¹)
 - MR-MLAA
 - xMLAA
 - xMR-MLAA
- Emission-based patient AC for PET/MR
 - Emission-based hardware AC for PET/MR
 - MLAA Combination of MR-MLAA and xMLAA

mMR

(non TOF)

CK

Gold

MR-MLAA

Joint estimation of attenuation and activity

- Using PET emission data
- Incorporating MR-based prior information
- Iterative approach
 - Update attenuation and activity in an alternating manner
- Objective function

$$Q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = L(\boldsymbol{\lambda}, \boldsymbol{\mu}) + L_{\mathrm{S}}(\boldsymbol{\mu}) + L_{\mathrm{I}}(\boldsymbol{\mu})$$

Log-likelihood Prior terms

 $\lambda = activity$ $\mu = attenuation$

- Intensity prior L_I
 - Voxel-dependent probability distribution of attenuation values
 - Derived from diagnostic T₁-weighted MR images

T. Heußer, C.M. Rank, M.T. Freitag, A. Dimitrakopoulou-Strauss, H.-P. Schlemmer, T. Beyer, and M. Kachelrieß, "MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for non-TOF PET/MR," *IEEE Trans. Nucl. Sci.* 63(5):2443-2451, 2016.

MR-MLAA's Intensity Prior

 $L_{\mathrm{I}}(\boldsymbol{\mu}) = \omega(\boldsymbol{r})\beta_{\scriptscriptstyle\mathrm{ST}}L_{\scriptscriptstyle\mathrm{ST}}(\boldsymbol{\mu}) + (1 - \omega(\boldsymbol{r}))\beta_{\scriptscriptstyle\mathrm{AB}}L_{\scriptscriptstyle\mathrm{AB}}(\boldsymbol{\mu})$

We use $\beta_{ST} = 0.1$ and $\beta_{AB} = 0.6$ throughout this presentation.

T. Heußer, C.M. Rank, M.T. Freitag, A. Dimitrakopoulou-Strauss, H.-P. Schlemmer, T. Beyer, and M. Kachelrieß, "MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for non-TOF PET/MR," *IEEE Trans. Nucl. Sci.* 63(5):2443-2451, 2016.

MR-MLAA Patient Example

dkfz

xMLAA

- Flexible hardware components are currently neglected in MR-based AC
 - MR-safe headphones
 - Radiofrequency torso surface coils
 - Positioning aids
 - ...

• Aim

 Estimate attenuation of flexible hardware components from the PET emission data

xMLAA

- Joint estimation of attenuation and activity
 - Based on the MLAA algorithm
- Attenuation map only updated within hardware mask
 - "External" MLAA or xMLAA
- Patient attenuation distribution and stationary hardware components are not modified

Hardware Mask Initial attenuation Attenuation Iteration Iteration

Emission data

xMLAA with Headphones

xMLAA with Torso Coil

xMLAA Attenuation Correction Factors

xMR-MLAA Combination of MR-MLAA and xMLAA

xMR-MLAA Algorithm

- Hardware and patient attenuation are updated sequentially
- Hardware update
 - xMLAA
 - 2 iterations, 21 subsets
- Patient update
 - MR-MLAA
 - 3 Iterations, 21 subsets
- Intensity prior

Hardware Soft Tissue Air/Bone

 $L_{\mathrm{I}}(\boldsymbol{\mu}) = \omega_{\mathrm{x}}(\boldsymbol{r})\beta_{\mathrm{x}}L_{\mathrm{x}}(\boldsymbol{\mu}) + (1 - \omega_{\mathrm{x}}(\boldsymbol{r}))L_{\mathrm{MR}}(\boldsymbol{\mu})$ $L_{\mathrm{MR}}(\boldsymbol{\mu}) = \omega(\boldsymbol{r})\beta_{\mathrm{ST}}L_{\mathrm{ST}}(\boldsymbol{\mu}) + (1 - \omega(\boldsymbol{r}))\beta_{\mathrm{AB}}L_{\mathrm{AB}}(\boldsymbol{\mu})$

Simulation without Hardware

Simulation without Hardware

Simulation with Hardware

Simulation with Hardware

xMR-MLAA Patient Study

- Clinical non-TOF ¹⁸F-FDG-PET/MR data of the head region acquired with a Siemens Biograph mMR
- Attenuation correction
 - MRAC: standard MR-based AC
 - xMR-MLAA: proposed method
 - CTAC: CT-derived AC
- Perform OSEM reconstructions using
 - 3 iterations
 - 21 subsets
 - Gaussian post-smoothing (σ = 2.0 mm)
- Limitation
 - MR hardware components are not present in the CT-based attenuation maps.
 - Therefore, we added the xMLAA-based hardware estimates to the CT-based attenuation maps.

xMR-MLAA Patient Example 1

dkfz.

xMR-MLAA Patient Example 2

Conclusions on xMR-MLAA

- Jointly estimates hardware and patient attenuation from the non-TOF PET/MR data.
- Has the potential to reduce the activity underestimation from around 15% to below 5%.
- Outlook: Including TOF information should yield even better performance.

