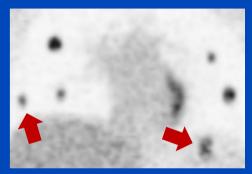
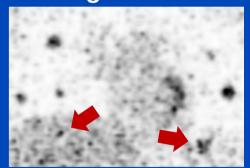
Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled MR Data

Christopher M Rank¹, Thorsten Heußer¹, Andreas Wetscherek¹, Heinz-Peter Schlemmer¹, and Marc Kachelrieß¹


¹ German Cancer Research Center (DKFZ), Heidelberg, Germany


Introduction

- One major challenge in PET image reconstruction is patient motion (respiratory, cardiac, involuntary motion).
- Motion causes image blurring and an underestimation of the reconstructed activity up to 25%.¹
- Gating
 - divide motion cycle into certain gates and reconstruct data from each gate separately
 - trade-off between temporal resolution and an appropriate CNR of the PET images

3D PET

4D gated PET

- Recent approach: PET/MR motion compensation (MoCo)^{2,3}
 - use MR information to estimate 4D motion vector fields (MVFs)
 - 4D MoCo PET reconstruction from 100% of rawdata

^[1] Kinahan , Fletscher. PET/CT Standardized Uptake Values (SUVs) in Clinical Practice and Assessing Response to Therapy. Semin Ultrasound CT MR 2010.

^[2] Grimm et al. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med. Image Anal. 2015.

Aims

- Develop a framework for respiratory motion compensation of PET images.
- Use information from a strongly undersampled radial MR sequence with an acquisition time of 1 minute.
- Difficulty: obtain high-fidelity MVFs from strongly undersampled MR data.

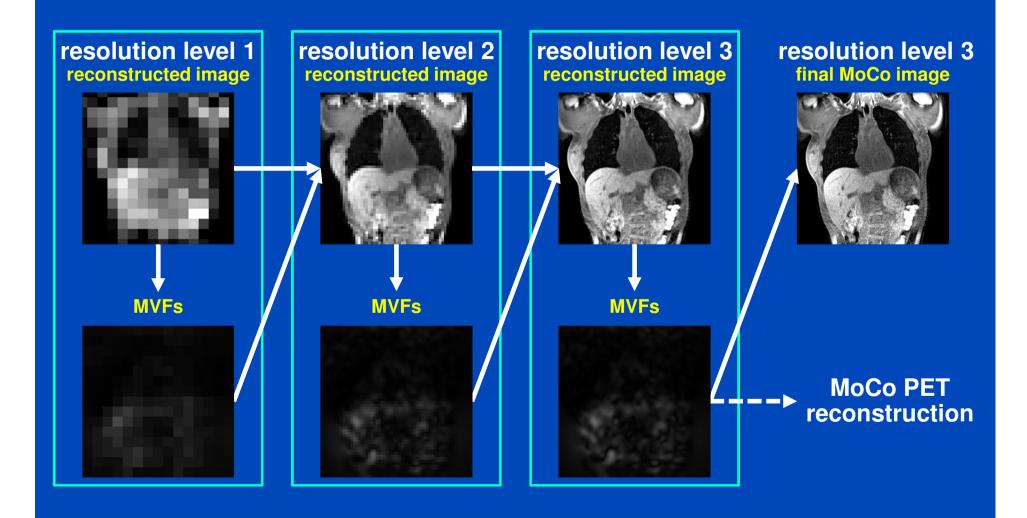
Related Work

Authors	MR sequence	MR acquisition time	Voxel size / mm ³	No. of gates	Motion estimation
Würslin et al. 2013	2D multi-slice	3.0 min	2.0×2.0×10.0 mm ³	4	3D
Petibon et al. 2014	2D multi-slice	3.0 min	2.0×2.0×8.0 mm ³	7	3D
Dutta et al. 2015	2D radial	5.5 to 7.0 min	2.0/2.3×2.0/2.3×5.0/8.0 mm ³	6	3D
Fayad et al. 2015a	2D multi-slice	1.5 min	2.0×2.0×10.0 mm ³	4	3D
Fayad et al. 2015b	2D multi-slice	3.0 min	2.0×2.0×10.0 mm ³	4	3D
Fürst et al. 2015	radial stack-of-stars	10 min	1.7×1.7×5.0 mm³	5	3D
Grimm et al. 2015	radial stack-of-stars	3.0 to 10 min	1.7×1.7×5.0 mm ³	5	3D
Manber et al. 2015	2D multi-slice	1.0 and 2.7	1.8×1.8×10.0ª mm³	10 ^b	2D
proposed	radial stack-of-stars	1.0 min	1.6×1.6×4.5 mm³	20 ^{b,c}	3D

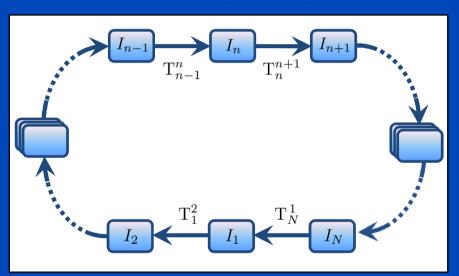
^a 25 mm gap between slice centers ^b discrimination between inhalation and exhalation

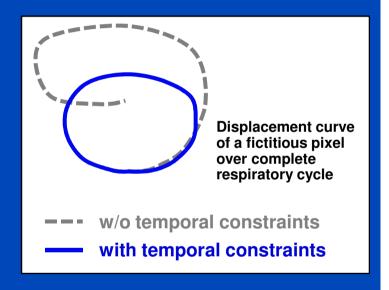
^c motion phases have an overlap of 50%

Data Acquisition and Processing


- Simultaneous PET/MR acquisition at Biograph mMR
 - tracer: fluorodeoxyglucose (¹8F-FDG)
 - MR sequence: 3D-encoded gradient echo sequence with radial stack-of-stars sampling scheme and golden angle radial spacing
- Retrospective generation of undersampled MR rawdata

 MR and PET data were sorted retrospectively into 20 overlapping motion phase bins (10% width)


Estimation of MVFs Schematic Overview (4D joint MoCo-HDTV¹)



Estimation of MVFs Cyclic Deformable Registration¹

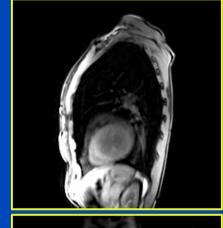
- Motion estimation only between adjacent phases
 - all other MVFs given by concatenation

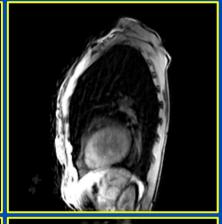
- Incorporate additional knowledge
 - a priori knowledge of quasi periodic breathing pattern
 - non-cyclic motion is penalized
 - error propagation due to concatenation is reduced


Results of MR Reconstruction

4D gated gridding

1 min / bed

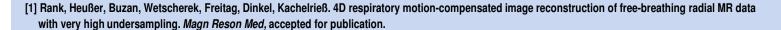

5 min / bed

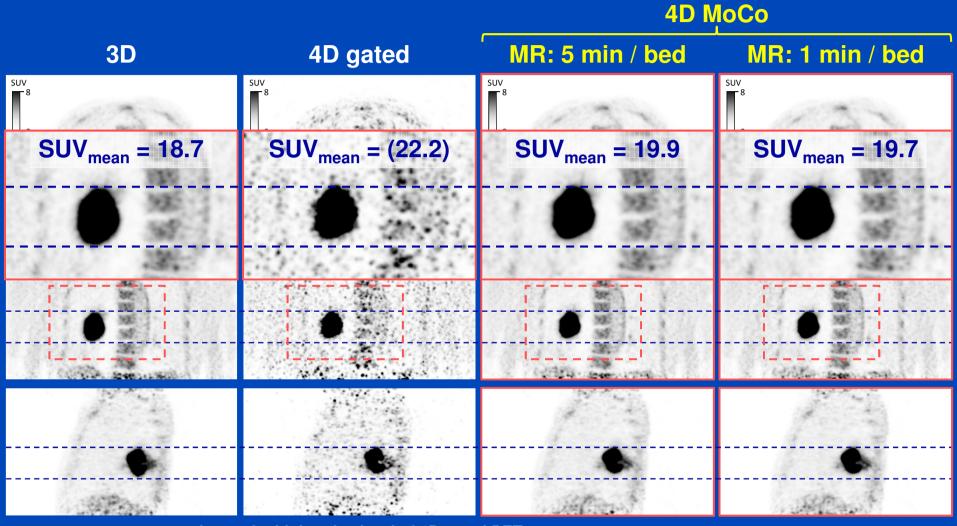


4D MoCo¹

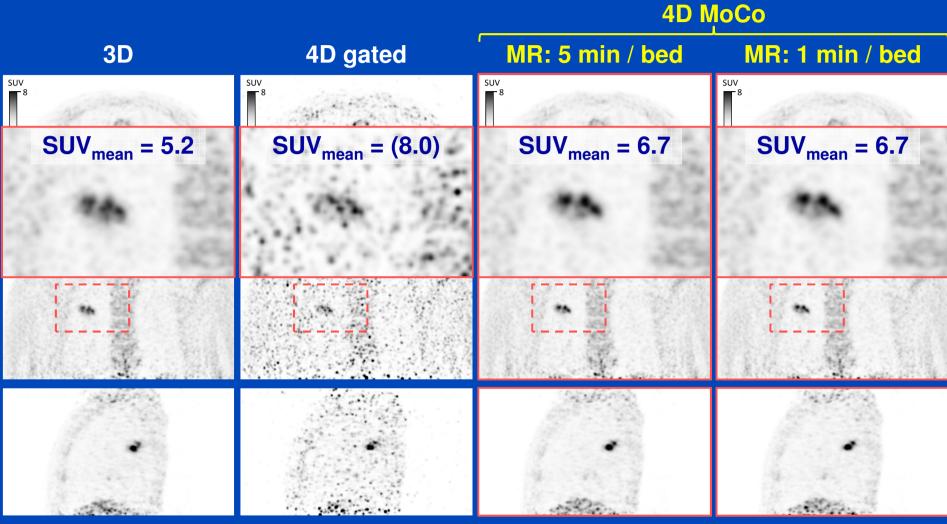
5 min / bed

1 min / bed



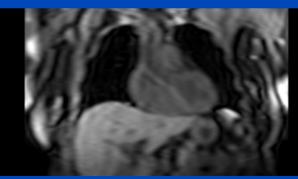

MVFs

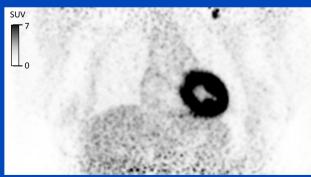
MVFs


Results of PET Reconstruction (I)

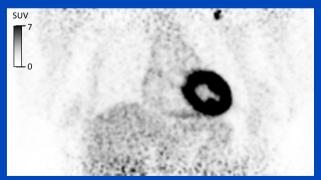
due to the high noise level of 4D gated PET, $\mathrm{SUV}_{\mathrm{mean}}$ was systematically overestimated

Results of PET Reconstruction (II)


due to the high noise level of 4D gated PET, SUV_{mean} was systematically overestimated


Summary and Outlook

- High quality PET respiratory MoCo is possible based on a 1 minute MR acquisition or even less.
- The strong undersampling requires to reconstruct MVFs and MR images in an alternating manner.
- MoCo for PET improves PET quantification, image quality, temporal resolution and noise level.
- Outlook:


5D MoCo MR

3D PET

5D MoCo PET

Thank You!

The 4th International Conference on Image Formation in X-Ray Computed Tomography

This presentation will soon be available at www.dkfz.de/ct.

This work was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.

