
ESR/EFOM Workshop, ECR 2020, Vienna, Austria

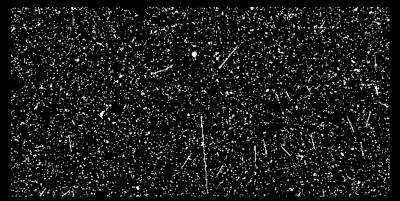
Photon Counting CT Detectors, Prototypes and Scan Modes

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Requirements for CT: up to 10⁹ x-ray photon counts per second per mm². Hence, photon counting only achievable for direct converters.

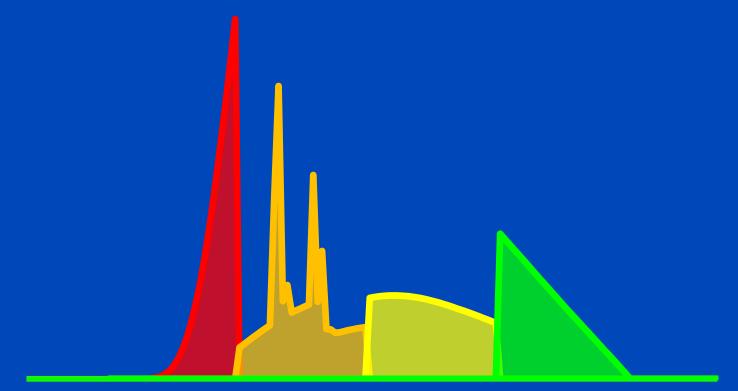
Dark Image of Photon Counter Shows Background Radiation


18 frames, 5 min integration time per frame

Energy Integrating (Dexela)

Photon Counting (Dectris Santis)

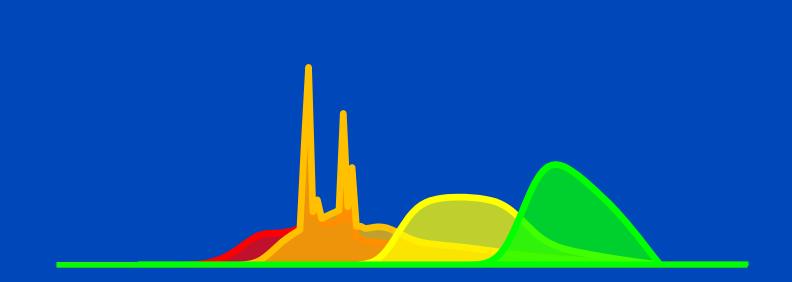
C/W = 1 cnts/2 cnts



Santis: 1 mm CdTe, 150 µm pixel size, 4 thresholds.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

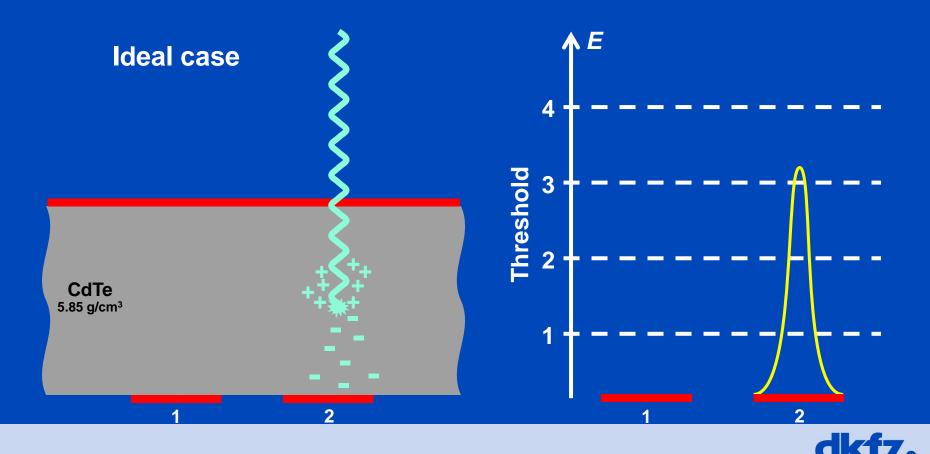
Ideally, bin spectra do not overlap, ...



Spectra as seen after having passed a 32 cm water layer.

Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?

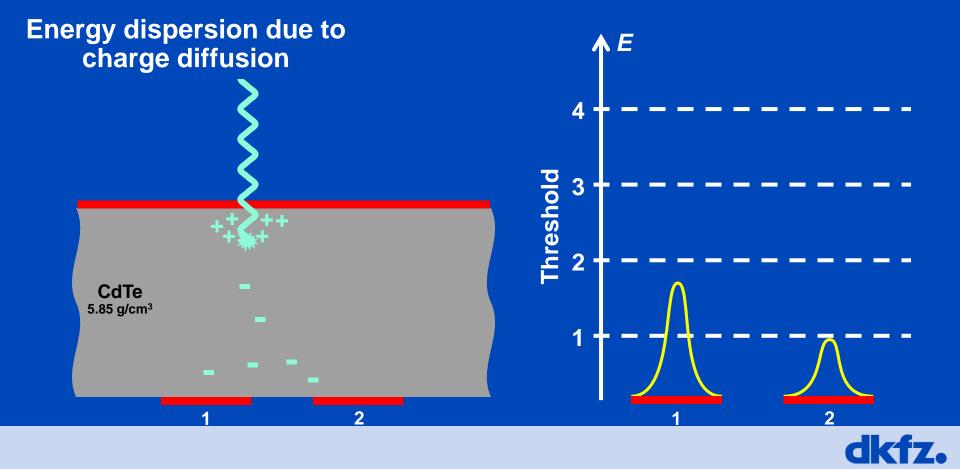
... realistically, however they do!



Spectra as seen after having passed a 32 cm water layer.

Photon Events

- Detection process in the sensor
- Photoelectric effect (e.g. 80 keV)


Photon Events

- Detection process in the sensor
- Compton scattering or K-fluorescence (e.g. 80 keV)

Photon Events

- Detection process in the sensor
- Photoelectric effect (e.g. 30 keV), charge sharing

Potential Advantages of Photon Counting CT

No electronic noise

- Less dose for infants
- Less noise for obese patients

Counting

- Swank factor = 1 = maximal
- Higher weights on low energies = good for iodine contrast

Energy bin weighting

- Lower dose/noise
- Improved iodine CNR

Smaller pixels (to avoid pileup)

- Higher spatial resolution
- Lower dose/noise at conventional resolution
- Spectral information on demand

What We Want

- High count rate
- Small detector pixels
- Good spectral separation
- Low cross-talk
- Large detector areas
- High absorption
- Low costs

Part 1: Existing Systems

dkfz.

Existing Systems 2018

Willemink et al

Project	Detector Material*	Detector Element Size (mm²) [†]	Current Status	Reference
GE Healthcare (Chicago, Ill)/ Stanford University (Stanford, Calif)/Rensselaer Polytechnic Institute (Troy, NY) high-dose efficiency CT	CZT, planned integration with dynamic bowtie	0.5 × 0.5	Table-top system under construction at Rensselaer Polytechnic Institute	29
Medipix All Resolution System (MARS Bioimaging, Christchurch, New Zealand)	CZT	0.11×0.11	Imaging of specimens and small animals. Human-size scanner under construction.	30
Philips Healthcare (Best, the Netherlands) spectral photon-counting CT	CZT	0.5 × 0.5	Imaging of specimens and small animals. Prototype system with small detector installed in human-sized gantry in Lyon, France.	31,32
KTH Royal Institute of Technology (Stockholm, Sweden)/Prismatic Sensors (Stockholm, Sweden) silicon strip	Silicon	0.5 × 0.4	Table-top measurements at KTH Royal Institute of Technology	5
Siemens (Forchheim, Germany) dual detector	Dual-source CT with one CdTe photon-counting detector	0.225×0.225 , detector elements binned into macro mode (0.9×0.9) and sharp mode (0.45×0.45)	Prototype human-size systems installed at Mayo Clinic (Rochester, Minn), at National Institutes of Health (Bethesda, Md), and in Forchheim, Germany. Research imaging of human volunteers	33

[†] Detector element sizes are the actual physical sizes, that is, not rescaled to isocenter.

Willemink et al. Radiology, 289(2):293-312, 2018

Existing Systems 2020

	Setup	Detector	Pixel size (mm²)	FOV	Thresholds	Acquisition	Extra
Philips Healthcare (preclinical) [1, 2, 3]	Preclinical	CdZnTe	0.5 × 0.5	16.8 cm	5 (30-98 keV)	2400 fps	
MARS Bioimaging (preclinical) [4, 5]	Preclinical MARS orthopaedic imaging- cooming soon	2 mm CdZnTe; five medipix3RX chips in a row (70 mm × 14 mm)	0.11 × 0.11	10 cm	8 (10-120 keV)	Scan time: 8 min for a sample with 30 mm diameter and 15 mm length	Charge summing mode
Siemens Somaton CounT [6]	Clinical, whole body	Dual-source CT with one PC detector of 1.6 mm CdTe	0.225 × 0.225 or 0.45 × 0.45 or 0.9 × 0.9	27.5 cm	4 (20-90 keV)	2304 fps 4608 fps	
KTH Royal Institute of Technology, Stockholm [7]	Table-top Translating detector	30 mm silicon strip	0.4 × 0.5	0.93 cm (need to translate the detector several times)	8	300 Mcps/mm ²	Edge-on design
Center for In Vivo Microscopy, Duke University, Durham (preclinical) [8, 9]	Preclinical Table-top	1 mm CdTe	0.15 × 0.15	~6.5 cm	4		
DKFZ (preclinical)	Preclinical	1 mm CdTe	0.15 × 0.15	~15 cm	4 (9-90 keV)	200 fps 100 Mcps/mm ²	

[1] Muenzel, et al. (2017). Spectral Photon-counting CT: Initial Experience with Dual–Contrast Agent K-Edge Colonography. Radiology.

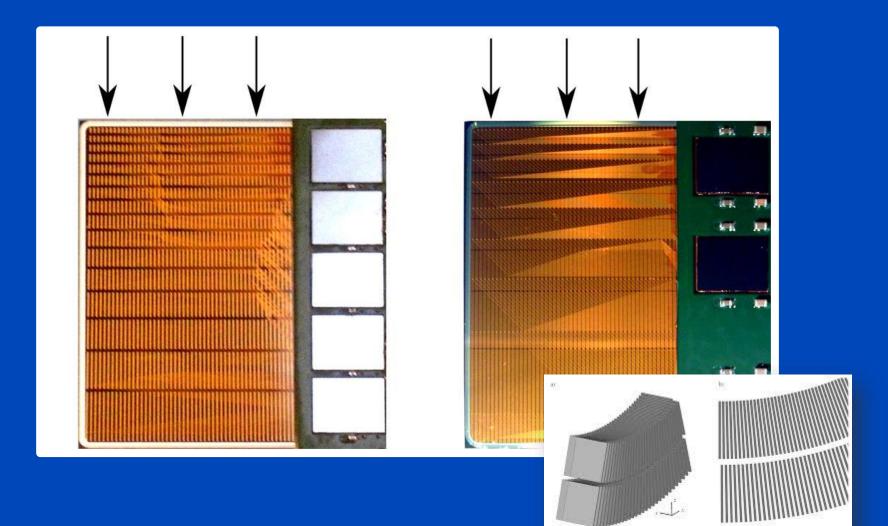
[2] Si-Mohamed, et al. (2017). Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution: In vivo. Nanoscale.

[3] Si-Mohamed, et al. (2017). Review of an initial experience with an experimental spectral photon-counting computed tomography system. Nuclear Instruments and Methods in Physics Research Section A

[4]Ostadhossein, (2020). Multi-"Color" Delineation of Bone Microdamages Using Ligand-Directed Sub-5 nm Hafnia Nanodots and Photon Counting CT Imaging. Advanced Functional Materials.

[5] MARS Small Bore Spectral Scanner Brochure: https://www.marsbioimaging.com/mars/wp-

content/uploads/2018/07/MARS_Electronic.pdf


[6] Yu, et al. (2016). Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Physics in Medicine and Biology.

[7] Persson, et al. (2014). Energy-resolved CT imaging with a photon-counting silicon-strip detector. Physics in Medicine and Biology.

[8] Badea, et al. (2019). Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors. Physics in Medicine and Biology.

[9] Clark, et al. (2019). Photon-counting cine-cardiac CT in the mouse. PLoS ONE.

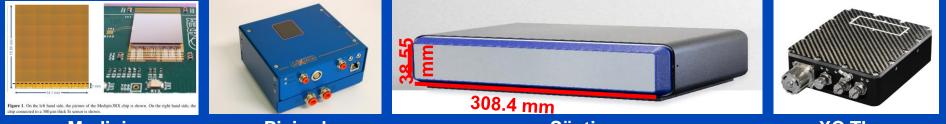


Image courtesy of KTH Royal Institute of Technology

Non-Proprietary Relevant PC Detectors

	Sensor	Pixel	Sensor Area	Bins	Acquisition	Features
		55 µm	1.4 × 1.4 cm ²	2	61 Mcps/mm ²	Charge summing mode: half the number of thresholds,
Medipix3RX ^{1,2} Si or CdTe		110 µm	3-side buttable	8	15 Mcps/mm ²	count rate reduced by a factor of 4 to 5
Pixirad Module ³	CdTe 0.65 mm	55 µm	$3.1 \times 2.5 \text{ cm}^2$ 2-side buttable	2	200 fps 162 Mcps/mm ²	Hexagonal pixel
Dectris Säntis ⁴	CdTe	150 µm	30.8 × 3.8 cm ²	4	200 fps 100 Mcps/mm ²	
Direct conver- sion XC Thor⁵	CdTe 0.75 or 2.0 mm	100 µm	up to 5.12 × 40.0 cm ²	2	300 fps 200 Mcps/mm²	Charge sharing correction

Medipix

Säntis

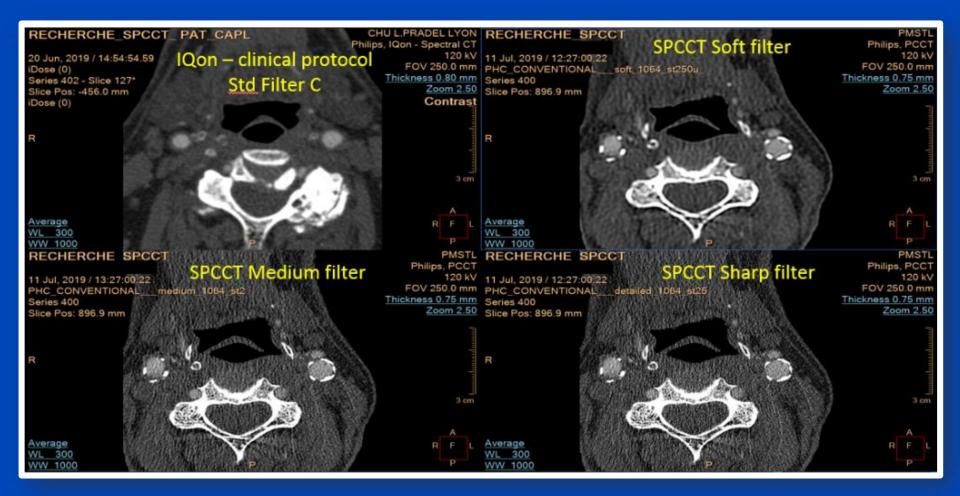
XC Thor

- ¹ Ballabriga, et al. (2013). The medipix3RX: A high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. Journal of Instrumentation.
- ² Frojdh, et al. (2014). Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300µm silicon sensor under high flux conditions. Journal of Instrumentation.
- ³ https://indico.cern.ch/event/284070/sessions/53910/attachments/524517/723391/Ravenna_Bellazzini1.pdf
- ⁴ Information provided by Dectris Ltd.
- ⁵ https://directconversion.com/product/xc-thor/

Philips SPCCT

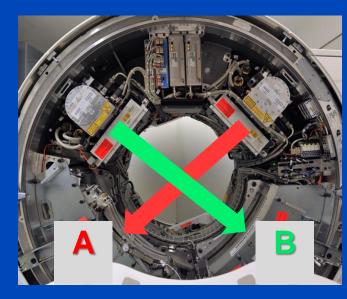
 The objective of the SPCCT project is to develop and validate a widely accessible, new quantitative and analytical in vivo imaging technology combining Spectral Photon Counting CT and contrast agents, to accurately and early detect, characterize and monitor neurovascular and cardiovascular disease.

Spectral Photon Counting CT European Project announces the arrival and set-up of the Philips prototype spectral scanner designed for human in Lyon.


Lyon, France, February 19, 2019

www.spcct.eu

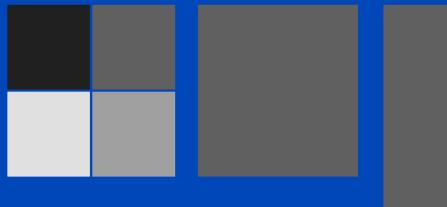
Philips SPCCT



Patient scan before (EI) and after (PC) treatment. www.spcct.eu

Siemens CounT CT System

Gantry from a clinical dual source scanner A: conventional CT detector (50.0 cm FOV) B: Photon counting detector (27.5 cm FOV)



Readout Modes of the CounT

PC-UHR Mode 0.25 mm pixel size

PC-Macro Mode 0.50 mm pixel size **El detector** 0.60 mm pixel size

Experimental CT, not commercially available.

Part 2: Scan Modes

Readout Modes of the Siemens CounT

Chess Mode

 0.9×1.1 mm focus

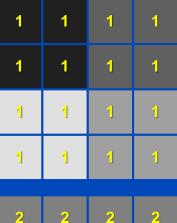
4 readouts

16 mm z-coverage

34

12

<mark>34</mark>


12

Macro Mode					
0.9×1.1 mm focus					
2 readouts					
16 mm z-coverage					

12	12	12	12	12	34	12
12	12	12	12	34	12	34
12	12	12	12	12	34	12
12	12	12	12	34	12	34

1.6 mm CdTe sensor. No FFS on detector B (photon counting detector). 4×4 subpixels of 225 μm size = 0.9 mm pixels (0.5 mm at isocenter). An additional 225 μm gap (e.g. for anti scatter grid) yields a pixel pitch of 1.125 mm.The whole detector consists of 128×1920 subpixels = 32×480 macro pixels.

Sharp Mode 0.9 × 1.1 mm focus 5 readouts 12 mm z-coverage

2

2

2

2

2

UHR Mode 0.7 × 0.7 mm focus 8 readouts 8 mm z-coverage

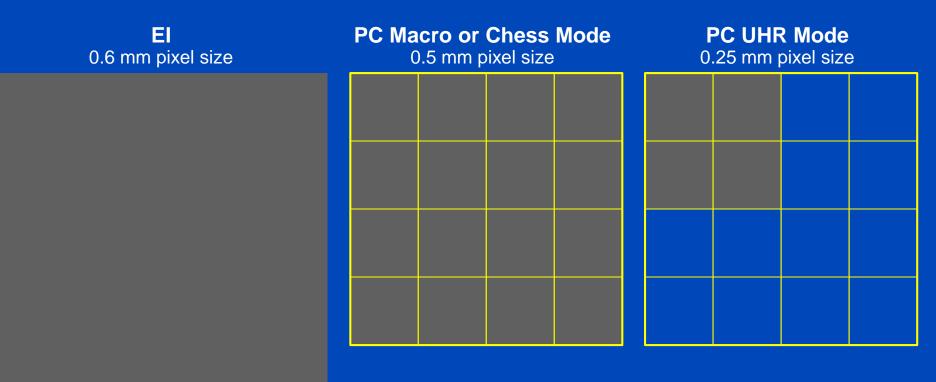
12	12	12	12
12	12	12	12
12	12	12	12
12	12	12	12

This photon-counting whole-body CT prototype, installed at the Mayo Clinic, at the NIH and at the DKFZ is a DSCT system. However, it is restricted to run in single source mode. The second source is used for data completion and for comparisons with El detectors.

2

2

2


2

2

2

CounT Detector Pixel Size El vs. PC

To Bin or not to Bin? (the continuous view)

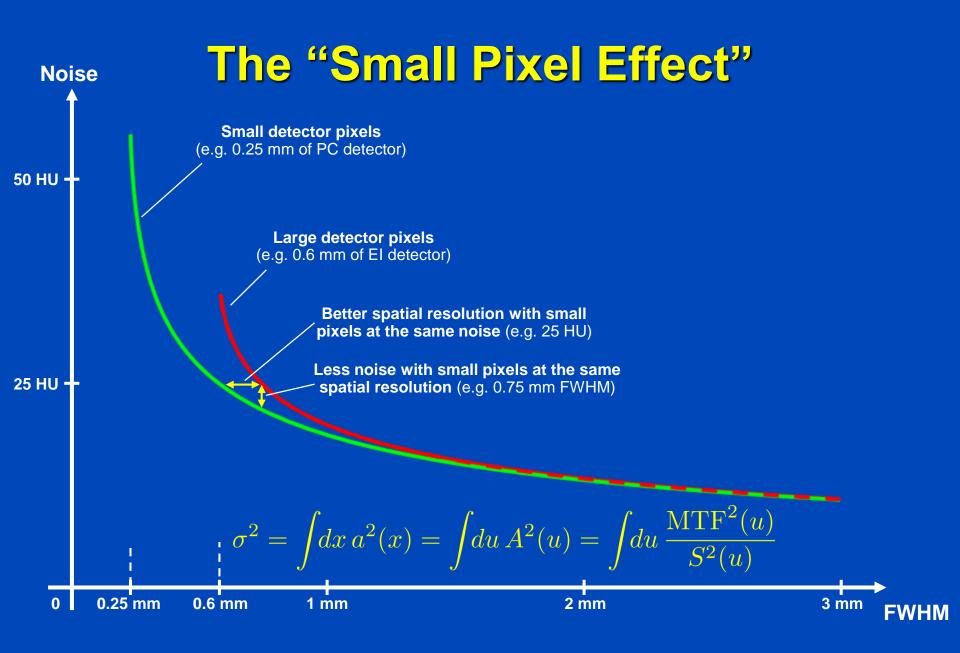
This nice phrase was coined by Norbert Pelc.

- We have PSF(x) = s(x) * a(x) and MTF(u) = S(u)A(u).
- From Rayleigh's theorem we find noise is

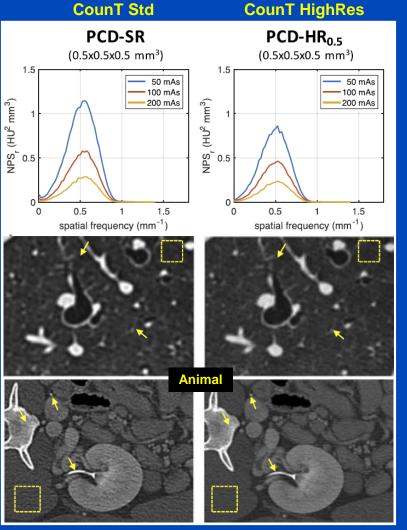
$$\sigma^2 = \int dx \, a^2(x) = \int du \, A^2(u) = \int du \, \frac{\mathrm{MTF}^2(u)}{S^2(u)}$$

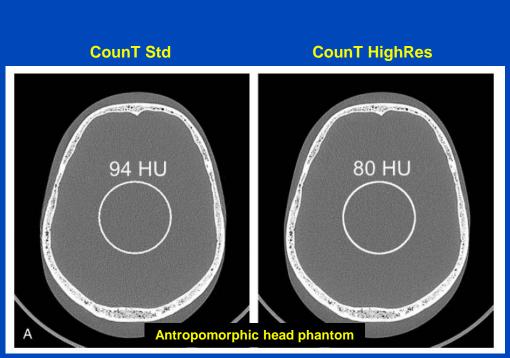
 $S^2(u)$

• Compare Small (A) with large (B) detector pixels:



- We have $S_{\rm A}(u) > S_{\rm B}(u)$ and thus $\sigma_{\rm A}^2 < \sigma_{\rm B}^2$.
- This means that a desired PSF/MTF is often best achieved with smaller detectors.


Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005 Baek, Pineda, and Pelc. PMB 58:1433-1446, 2013


?]

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

"However, when comparing with standard resolution data at same in-plane resolution and slice thickness, the PCD 0.25 mm detector mode showed **19% less image noise** in phantom, animal, and human scans."

A **15% noise reduction** (from 94 HU to 80 HU) was observed (same spatial resolution and dose). This corresponds to a dose reduction of 28%.

Leng et al. 150 µm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology. Invest. Radiol. 53(11), 2018

Pourmorteza et al. Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Tomography: First-in-Human Results. Invest. Radiol. 53(6), 2018. All images reconstructed with 1024^2 matrix and 0.15 mm slice increment. C = 1000 HU W = 3500 HU

Data courtesy of the Institute of Forensic Medicine of the University of Heidelberg and of the Division of Radiology of the German Cancer Research Center (DKFZ)

PC-UHR, U80f, 0.25 mm slice thickness

± 214 HU

PC-UHR, U80f, 0.75 mm slice thickness

± 131 HU

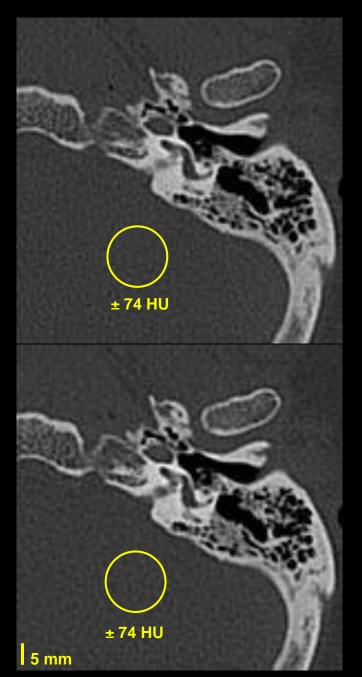
PC-UHR, B80f, 0.75 mm slice thickness

± 53 HU

El, B80f, 0.75 mm slice thickness

± 75 HU

10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.40 mm CTDI_{vol}: 16.0 mGy


10% MTF: 19.1 lp/cm 10% MTF:17.2 lp/cm xy FWHM: 0.48 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

10% MTF: 9.3 lp/cm 10% MTF:10.5 lp/cm xy FWHM: 0.71 mm z FWHM: 0.67 mm CTDI_{vol}: 16.0 mGy

dkfz.

Acquisitions at same noise

Acquisition with EI:

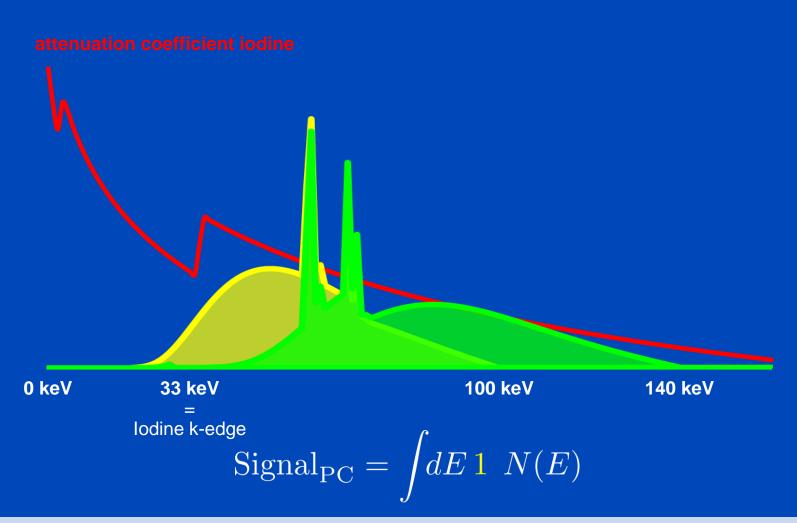
- Tube voltage of 120 kV
- Tube current of 350 mAs
- Resulting dose of CTDI_{vol 32 cm} = 26.4 mGy

Acquisition with UHR:

- Tube voltage of 120 kV
- Tube current of 200 mAs
- Resulting dose of CTDI_{vol 32 cm} = 16.1 mGy

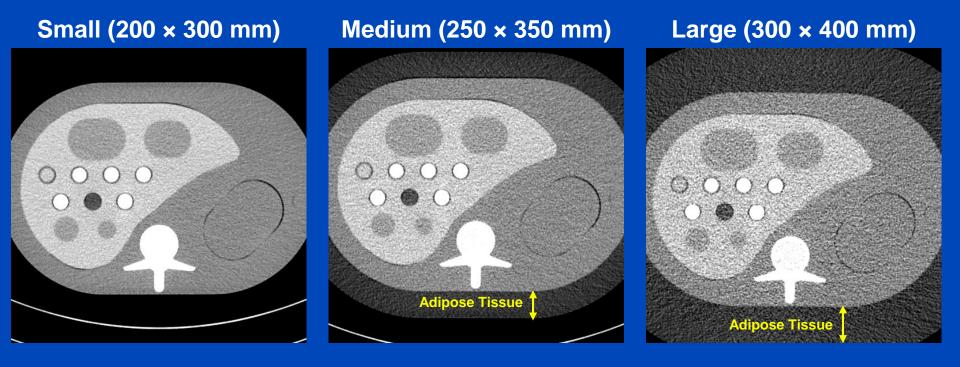
This is a 39% reduction of dose!

C = 1000 HU W = 3500 HU


Energy Integrating (Detected Spectra at 100 kV and 140 kV)

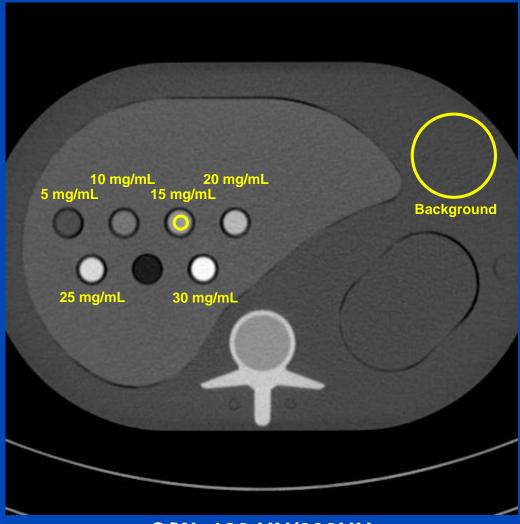
0 keV 33 keV 100 keV 140 keV lodine k-edge $\text{Signal}_{\text{EI}} = \int dE \, E \, N(E)$

Spectra as seen after having passed a 32 cm water layer.

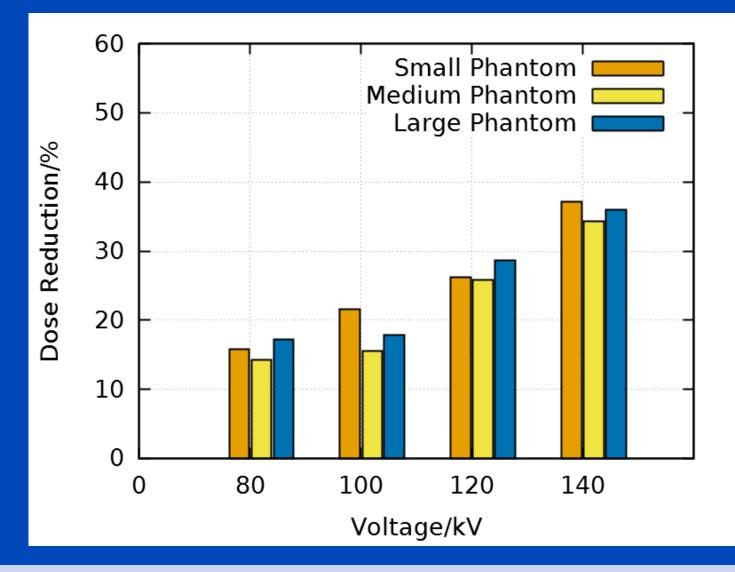

Photon Counting: "lodine Effect" (Detected Spectra at 100 kV and 140 kV)

Spectra as seen after having passed a 32 cm water layer.

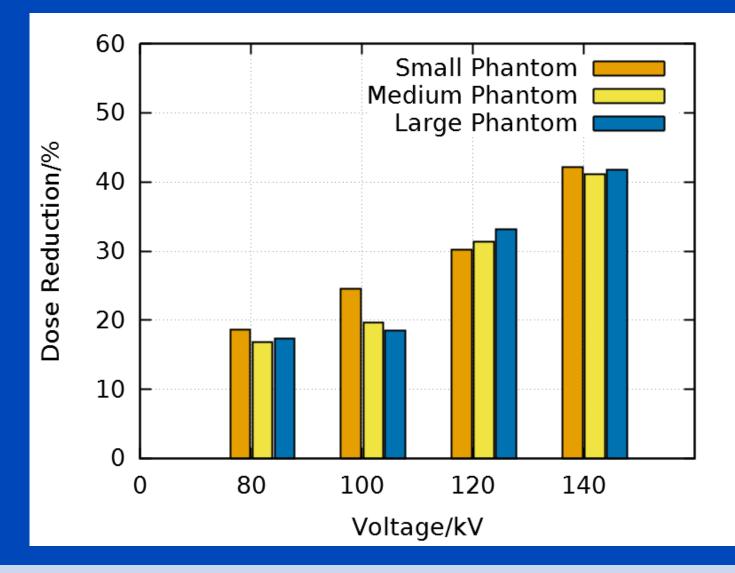
dkfz.


Iodine CNRD Assessment Reconstruction Examples @ 80 kV

C/W=0 HU/400HU


Iodine CNRD Assessment Regions of Interest

C/W=180 HU/600HU



PC with 1 Bin vs. El Potential Dose Reduction

PC with 2 Bins vs. El Potential Dose Reduction

X-Ray Dose Reduction of B70f

23% ± 12% 32% ± 10% 35% ± 10% 80 kV 33% ± 9%	34% ± 10% 32% ± 8% 29% ± 15% 100 kV 52% ± 5%	35% ± 11% 35% ± 8% 27% ± 9% 120 kV 57% ± 7%	25% ± 10% 34% ± 9% 31% ± 11% 140 kV 57% ± 6%
35% ± 10% 80 kV	29% ± 15% 100 kV 52% ± 5%	27% ± 9%	31% ± 11% 140 kV
80 kV	100 kV 52% ± 5%	120 kV	140 kV
	52% ± 5%		
	52% ± 5%		
41% ± 8%	47% ± 7%	60% ± 6%	62% ± 4%
48% ± 8%	43% ± 10%	54% ± 6%	63% ± 5%
B70f		El PC Macro o 0.6 mm pixel size	r Chess Mode PC UHR Mode pixel size 0.25 mm pixel size

Klein, Kachelrieß, Sawall et al. Invest. Radiol. 55(2), Feb 2020, in press

dkfz.

X-Ray Dose Reduction of D40f

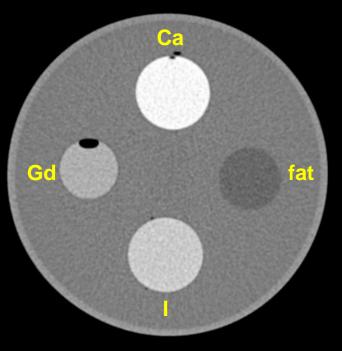
UHR vs. Macro	80 kV	100 kV	120 kV	140 kV
PC vs. PC S ("pixel effect only") M	5% ± 16%	12% ± 17%	17% ± 17%	9% ± 15%
("pixel effect only /	11% ± 14%	9% ± 12%	16% ± 16%	13% ± 13%
L	11% ± 14%	6% ± 17%	6% ± 17%	4% ± 17%
UHR vs. El	80 kV	100 kV	120 kV	140 kV
PC vs. El S	10% ± 11%	28% ± 11%	36% ± 12%	38% ± 12%
("pixel effect") "jodine effect")	15% ± 12%	23% ± 12%	40% ± 10%	43% ± 9%
L	24% ± 14%	17% ± 11%	33% ± 12%	43% ± 9%
Noise		40f	0.6 mm pixel size 0.5 mm	Chess Mode pixel size PC UHR Mode 0.25 mm pixel size
				Resolution

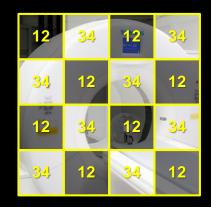
Klein, Kachelrieß, Sawall et al. Invest. Radiol. 55(2), Feb 2020, in press

dKTZ

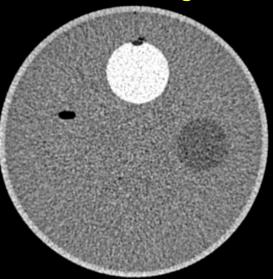
Conventional reconstruction at spatial resolution of conventional CT (1 mm slices with 0.5 mm pixels)

Iterative reconstruction at spatial resolution of photon counting CT (0.25 mm slices with 0.25 mm pixels)

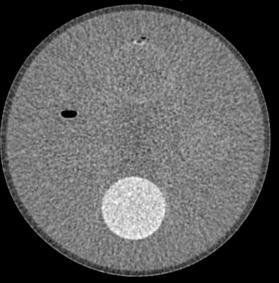

68 year old woman with breast cancer metastases. $CTDI_{vol} = 24.17 \text{ mGy}$, C = 500 HU, W = 3000 HU. Images courtesy of the Division of Radiology of the German Cancer Research Center (DKFZ).



MECT


Ca-Gd-I Decomposition

Chess pattern mode 140 kV, 20/35/50/65 keV C = 0 HU, W = 1200 HU


Calcium image

Gadolinium image

Courtesy of Siemens Healthcare

lodine image

Summary

- Photon counting CT promises many advantages.
- Several experimental systems have been proposed.
- Clinical data published only for a single experimental photon counting CT (Siemens Somatom CounT)
- More scan modes due to a variety of detector modes
 - Pixel binning
 - Number of thresholds
 - Threshold settings

Significant improvements expected

- Higher spatial resolution
- Spectral information on demand
- Better dose usage, i.e. less noise, less dose
- Better image quality
- Clinical product not yet available.

Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

August 3 - August 7 • 2020 • Regensburg • Germany • www.ct-meeting.org

Conference Chair: Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation is available at www.dkfz.de/ct.

Job opportunities through DKFZ's international Fellowship programs (marc.kachelriess@dkfz.de). Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.